
Prover9 Manual•
Introduction•
Installation•
Running Prover9•
Input Files•
Clauses & Formulas•
Search Prep

Auto Modes♦
Term Ordering♦
More Prep♦
Search Limits♦

•

Inference
The Loop♦
Select Given♦
Inference Rules♦
Process Inferred♦

•

Output Files•
More Features

Weighting♦
Attributes♦
Actions♦
Goals and Denials♦
Hints♦
Semantics♦

•

Mace4
Introduction♦
Input♦
Options♦
Interpformat♦
Isofilter♦

•

Related Programs
Prooftrans♦
FOF-Prover9♦
More Programs♦

•

Ending
All Prover9 Options♦
Glossary♦
References♦

•

Prover9 Manual

1

Prover9 Manual

2

Prover9 Manual Version Aug-2007

Introduction
Prover9 is a resolution/paramodulation automated theorem prover for first-order and equational logic. Prover9 is a
successor of the Otter Prover [McCune-Otter33].

Getting Started

Prover9 has a fully automatic mode in which the user simply gives it formulas representing the problem. See the
Section Clauses and Formulas.

An good way to learn about Prover9 is to browse and study the example input and output files that are available.
Users are encouraged to contribute examples from their own work with Prover9 (and Mace4).

Related Programs

Several programs come bundled with Prover9. The most important is Mace4, which looks for finite models and
counterexamples. Mace4 can help avoid wasting time searching for a proof with Prover9 by first finding a
counterexample or by first helping to debug logical specifications.

Another useful program is Prooftrans, which can transform proofs found by Prover9 in various ways, including
producing more detailed proofs, simplifying the justifications, renumbering the steps, producing proofs in XML,
and producing proofs for input to other programs.

Terms of Use

Prover9, Mace4, related programs, and the LADR libraries (with which they were all constructed) are distributed
under the terms of the GNU General Public License (v2).

Other Theorem Provers

E is a very good all-around prover.•
Waldmeister is a fast prover for equational logic.•
Vampire has lately been winning the MIX category of CASC.•
Paradox is an excellent program for finding finite models and counterexamples.•

Format Conventions for this Manual

Many parts of this manual are displayed in boxes with different background colors.

A display like the following indicates part of an input or output file.

Prover9 Manual

Introduction 3

http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/otter/
http://www.cs.unm.edu/~mccune/prover9/examples/
http://www.gnu.org/copyleft/gpl.html
http://www.eprover.org
http://www.mpi-sb.mpg.de/~hillen/waldmeister/
http://en.wikipedia.org/wiki/Vampire_theorem_prover
http://www.cs.miami.edu/~tptp/CASC/
http://www.cs.chalmers.se/~koen/paradox/

formulas(sos).
 all x all y (subset(x,y) (all z (member(z,x) -> member(z,y)))).
end_of_list.

formulas(goals).
 all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).
end_of_list.

A display like the following indicates a job that is run on a command line, for example, a command to run a
Prover9 job.

prover9 -f subset_trans.in > subset_trans.out

A display like the following indicates some output that appears on the computer screen, for example, a message
from Prover9.

-------- Proof 1 --------
THEOREM PROVED
------ process 3666 exit (max_proofs) ------

Displays like the following contain algorithms.

Simplify clause (c):
 demodulate c
 merge identical literals

A display like the following notes an important difference between Prover9 and Otter.

Prover9's automatic mode is set by default. Otter's automatic mode must be explicitly set.

Next Section: Installation

Prover9 Manual

4 Format Conventions for this Manual

Prover9 Manual Version Aug-2007

Installing Prover9, Mace4, and Friends

Unix-like Systems

Here is a quick example for Unix-like systems, including Linux and Macintosh OS X. Visit the Prover9 Web page
and download the current version of LADR. The filename should be something like
LADR-June-2006A.tar.gz; make sure that file is in your current directory. Run the following commands.

% zcat LADR-June-2006A.tar.gz | tar xvf -
% cd LADR-June-2006A
% make all

Prover9, Mace4, Prooftrans, and several other programs should now be in the directory
LADR-June-2006A/bin. You can either include that directory in your search path or copy those programs to
some directory that is already in your search path.

Microsoft Windows

For now, see that the Prover9 Web page.

Next Section: Running Prover9

Prover9 Manual

Installing Prover9, Mace4, and Friends 5

http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

Prover9 Manual

6 Microsoft Windows

Prover9 Manual Version Aug-2007

Running Prover9
The standard way of running Prover9 is to (1) prepare an input file containing the logical specification of a
conjecture and the search parameters, (2) issue a command that runs Prover9 on the input file and produces an
output file, (3) look at the output, and (4) maybe run Prover9 again with different search parameters.

A graphical user interface (GUI) for Prover9 is under development, but it is not described in this manual. Nearly
all of the information in this manual applies also when using the GUI.

An Input File

Here is an input file; assume it is named subset_trans.in.
(Use a plain text editor, not a word processor, to create input files.)

formulas(sos).
 all x all y (subset(x,y) (all z (member(z,x) -> member(z,y)))).
end_of_list.

formulas(goals).
 all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).
end_of_list.

A Basic Prover9 Command

Here is a command to run Prover9 on the preceding file and send the output to a file called
subset_trans.out.

prover9 -f subset_trans.in > subset_trans.out

When you run the preceding command, a message like the following should appear immediately on your screen.

-------- Proof 1 --------
THEOREM PROVED
------ process 3666 exit (max_proofs) ------

The output file subset_trans.out should contain the proof (and a lot of other information about the job).

Taking Input from Standard Input

Prover9 jobs can be run in a slightly different way, taking input from "standard input" instead of a named file, as
follows.

prover9 < subset_trans.in > subset_trans.out2

Prover9 Manual

Running Prover9 7

The disadvantage of using this method is that the name of the input file is not given in the output file.

More Than One Input File

The input can occur in more than one file:

prover9 -f subset.in trans.in > subset_trans.out3

All arguments after the "-f" are taken as input filenames, and there can be as many as you like. When multiple
filnames are given on the command line, a list of objects (clauses, formulas, or terms) cannot be split across more
than one file.

Time Limit on the Command Line

Prover9 also accepts a time limit, in seconds, on the command line. The following command limits the job to
about 10 seconds.

prover9 -t 10 -f subset_trans.in > subset_trans.out4

If "-t" and "-f" are both in the command, the "-t" must occur first.

Getting Statistics During the Search

This section applies to Unix-like systems only.

If a Prover9 process is running in the background, one can tell it to send search statistics (without killing the job)
to the output file sending a "USR1" signal to the process. For example,

% prover9 -f p3a.in > p3a.outb &
 [1] 31613
% kill -USR1 31613
 A report (17.75 seconds) has been sent to the output.

Calling Prover9 From Another Program

If Prover9 is called from another program (e.g., a shell script, a Perl script, or a Python script), Prover9's exit
codes can tell the other program the reason Prover9 terminates. The following table shows the exit codes.

Exit Code Reason for Termination
0 (MAX_PROOFS) The specified number of proofs (max_proofs) was found.
1 (FATAL) A fatal error occurred (user's syntax error or Prover9's bug).
2 (SOS_EMPTY) Prover9 ran out of things to do (sos list exhausted).
3 (MAX_MEGS) The max_megs (memory limit) parameter was exceeded.
4 (MAX_SECONDS) The max_seconds parameter was exceeded.
5 (MAX_GIVEN) The max_given parameter was exceeded.
6 (MAX_KEPT) The max_kept parameter was exceeded.
7 (ACTION) A Prover9 action terminated the search.

Prover9 Manual

8 Taking Input from Standard Input

101 (SIGINT) Prover9 received an interrupt signal.
102 (SIGSEGV) Prover9 crashed, most probably due to a bug.

The calling program will probably want to look in Prover9's output, for example, to extract a proof. See the page
on Prover9 output files.

Next Section: Input Files

Prover9 Manual

Calling Prover9 From Another Program 9

Prover9 Manual

10 Calling Prover9 From Another Program

Prover9 Manual Version Aug-2007

Prover9 Input Files
Prover9 takes its input from one or more (usually one) files. If there is more than one input file, lists of objects
(formulas, weighting rules, etc.) cannot be split across more than one file. The page Running Prover9 shows how
to specify the files in the commands to run Prover9.

Comments and Whitespace

There are two kinds of comment:

Line comment. If the first '%' (percent sign) on a line is not the start of a block comment ('%BEGIN'),
everything from that symbol through the end of the line is ignored.

•

Block comment. If the parser sees the string '%BEGIN', that is not in a line comment, it will ignore
everything up through the next occurrence of 'END%'. Line breaks are irrelevant. If there is no 'END%', the
rest of the file is ignored, without causing an error.

•

Comments are not echoed to the output file. Clauses can have label attributes which can serve as different kind of
comment which does appear in the output file.

Whitespace (spaces, newlines, tabs, etc.) is optional in most situations. The important exception is that whitespace
is required around some operations in clauses and formulas (see the page Clauses and Formulas).

A Simple Example

The most basic kind of input file consists of list of clauses named "sos" representing the negation of the
conjecture, as in the following example.

formulas(sos). % clauses to be placed in the sos list
 -man(x) | mortal(x).
 man(george).
 -mortal(george).
end_of_list.

Prover9 will take the clauses, use its automatic mode to decide on the inference rules, and then search for a
refutation.

The preceding example can also be stated in a more natural way by using a non-clausal formula for the
man-implies-mortal rule and the goals list for the conclusion, as follows.

formulas(assumptions). % synonym for formulas(sos).
 man(x) -> mortal(x). % open formula with free variable x
 man(george).
end_of_list.

Prover9 Manual

Prover9 Input Files 11

formulas(goals). % to be negated and placed in the sos list
 mortal(george).
end_of_list.

Prover9 will transform the formulas in this input to the same clauses as in the basic input above before starting the
search for a refutation.

In Otter and in earlier versions of Prover9, "clauses" and "formulas" were distinct types of object,
and formulas could not have free variables. Now, clauses are a subset of formulas, and Prover9
decides which formulas are non-clausal and takes the appropriate actions to transform them to
clauses.

Types of Input

Prover9 input consists of lists of objects (formulas or terms) and commands.

Lists of Objects

Lists of objects start with a type (formulas or terms) and name (sos, goals, weights, etc.), and end with
end_of_list. The following display show an example of each type of accepted list, with one object in each
list.

formulas(sos). p(x). end_of_list. % the primary input list
formulas(assumptions). p(x). end_of_list. % synonym for formulas(sos)
formulas(goals). p(x). end_of_list. % some restrictions (see Goals)
formulas(usable). p(x). end_of_list. % seldom used
formulas(demodulators). f(x)=x. end_of_list. % seldom used, must be equalities
formulas(hints). p(x). end_of_list. % should be used more often (see Hints)

list(weights). weight(a) = 10. end_of_list. % see Weighting
list(kbo_weights). a = 3. end_of_list. % see Term Ordering
list(actions). given = 100 -> set(print_kept). end_of_list. % see Actions
list(interpretations). interpretation(2,[],[relation(p,[1])]). end_of_list. % see Semantics

If the input contains more than one list of a particular type/name, the lists are simply concatenated by Prover9 as
they are read.

Commands

Eleven types of command are accepted. Here is an example of each.

op(400, infix_right, ["+", "--"]). % declare parse precedence and type (see Clauses and Formulas)

redeclare(negation, "~"]). % change the negation symbol (see Clauses and Formulas)

set(print_kept). % set a flag

clear(auto_inference). % clear a flag

assign(max_weight, 40). % integer parameter

assign(stats, some). % string parameter

assoc_comm(*). % not currently used for Prover9

Prover9 Manual

12 A Simple Example

commutative(g). % not currently used for Prover9

predicate_order([=,<=,P,Q). % predicate symbol precedence (see Term Ordering)

function_order([0,1,a,b,f,g,*,+]). % function symbol precedence (see Term Ordering)

lex([0,1,a,b,f,g,*,+]). % synonym for "function_order"

skolem([a,b,f,g]). % declare symbols to be Skolem functions (rarely used)

Order of Commands and Lists of Objects

For the most part, the order of things in the input file(s) is irrelevant. For example, commands can usually be
mixed with lists of objects. The situations in which order matters are listed here.

The op(precedence, type, symbols) commands must occur before any clauses or formulas
that contain the affected symbols.

•

Some of the flags and parameters alter other flags and parameters. The alterations can be undone by
placing the appropriate command after the command that alters. The output file clearly shows what
happens in these cases.

•

Note that changing the order of clauses or formulas within a list, changing the order of literals in a clause, or
changing the order of subformulas in a formula can change the search, occasionally in substantial ways.

Next Section: Clauses & Formulas

Prover9 Manual

Commands 13

Prover9 Manual

14 Order of Commands and Lists of Objects

Prover9 Manual Version Aug-2007

Clauses and Formulas
The Glossary Page contains definitions of term, atomic formula, literal, clause, and formula from a logical point
of view. This page contains descriptions of how those kinds of things are parsed and printed, and we refer to them
collectively as objects.

In Otter and in earlier versions of Prover9, "clauses" and "formulas" were distinct types of object,
and "formulas" could not have free variables. Now, clauses are a subset of formulas.

Here are the important points about clauses and formulas.

Clauses are a subset of formulas. All input formulas, including clauses, appear in a list headed by
formulas(list_name).

•

There is a rule for distinguishing variables from constants, because clauses and other formulas can have
free variables (variables not bound by quantifiers). The default rule is that variables start with (lower
case) u through z. For example, in the formula P(a,x), the term a is a constant, and x is a variable.
(See also the flag prolog_style_variables.)

•

Free variables in clauses and formulas are assumed to be universally quantified at the outermost level.•
Prover9's inference rules operate on clauses. If non-clausal formulas are input, Prover9 immediately
translates them clauses by NNF, Skolemization, and CNF conversions.

•

Parsing and Printing Objects

The prefix standard form of an object with an n-ary symbol, say f, at the root is

f(argument_1, ..., argument_n)

Whitespace (spaces, tabs, newline, etc.) is accepted anywhere except within symbols.

Prover9 will accept any term or formula written prefix standard form. However formulas and many terms can be
written in more convenient ways, for example, "a=b | a!=c'" instead of "|(=(a,b),-(=(a,'(c))))".

Prover9 uses a general mechanism in which binary and unary symbols can have special parsing properties such as
"infix", "infix-right-associated", "postfix". In addition, each of those symbols has a precedence so that many
parentheses can be omitted. (The mechanism is similar to those used by most Prolog systems.)

Many symbols have built-in parsing properties (see the table below), and the user can declare parsing properties
for other symbols with the "op" command.

Clauses and formulas make extensive use of the built-in parsing properties for the equality relation and the logic
connectives. Instead of first presenting the general mechanism, we will present the syntax for formulas under the
assumption of the built-in parsing properties. The general mechanism is described below in the section Infix,

Prover9 Manual

Clauses and Formulas 15

Prefix, and Postfix Declarations.

Symbols

Symbols include variables, constants, function symbols, predicate symbols, logic connectives. Symbols do not
include parentheses or commas.

Prover9 recognizes several kinds of symbol.

An ordinary symbol is a (maximal) string made from the characters a-z, A-Z, 0-9, $, and _.•
A special symbol is a (maximal) string made from the special characters: {+-*/\^<>=`~?@&|!#';}.•
A quoted symbol is any string enclosed in double quotes.•
The empty list symbol is []. This is a special case.•

The reason for separating ordinary and special symbols is so that strings like a+b; that is, +(a,b), can be
written without any whitespace around the +.

A symbol cannot have both ordinary and special characters, for example R+ (unless it is a quoted symbol).

Objects (terms or formulas) are constructed from symbols, parentheses, and commas.

Overloaded Symbols

In most cases, symbol overloading is not allowed. For example a symbol cannot be both a function symbol and a
predicate symbol, or both a constant and a binary function symbol. There are a few exceptions.

The logic connectives can also be used as function or predicate symbols of the same arity. For example, -
is typically used as unary arithmetic minus well as for logical negation.

•

Prover9 is much more strict about overloading symbols than Otter is.

Symbols With Meaning

Several symbols have built-in meaning. These are the equality symbols (=, !=) and logic connectives (-, |, &,
->, <-, <->, all, exists). These symbols can be changed as described in the section Redeclaring Built-in
Symbols. (Parentheses, comma, period, and the list construction symbols cannot be redeclared.)

Terms

Any term can be written in prefix standard form, for example, f(g(x),y) and *('(x),y). If symbols in the
term have parsing/printing properties (either built-in) or declared with the op command), the term can be written
in infix/prefix/postfix form with assumed precedence, for example, x'*y, which represents *('(x),y) under
the built-in parsing/printing properties.

A list notation similar to Prolog's can be used to write terms that represent lists. Note that the "cons" operator is
":", instead of "|" as in Prolog.

Term Standard Prefix Form What it Is

Prover9 Manual

16 Parsing and Printing Objects

[] $nil the empty list

[a,b,c] $cons(a,$cons(b,$cons(c,$nil))) list of three objects

[a:b] $cons(a,b) first, rest

[a,b:c] $cons(a,$cons(b,c)) first, second, rest

Lists are frequently used in Prover9 commands such as the function_order command, and they are
sometimes also used in clauses and formulas.

Atomic Formulas

Equality is a built-in special case. The binary predicate symbol = is usually written as an infix relation. The binary
symbol != is an abbreviation for "not equal"; that is, the formula a!=b stands for -(a=b), or more precisely,
-(=(a,b)). From the semantics point of view, the binary predicate symbol = is the one and only equality
symbol for the inference rules that use equality.

Clauses

The disjunction (OR) symbol is |, and the negation (NOT) symbol is -. The disjunction symbol has higher
precedence than the equality symbol, so equations in clauses do not need parentheses. Every clause ends with a
period. Examples of clauses follow (Prover9 adds some extra space when printing clauses).

formulas(sos).
 p|-q|r.
 a=b|c!=d.
 f(x)!=f(y)|x=y.
end_of_list.

Formulas

Meaning Connective Example

negation - (-p)

disjunction | (p | q | r)

conjunction & (p & q & r)

implication -> (p -> q)

backward implication

Prover9 Manual

Terms 17

Prover9 Manual

18 Formulas

Prover9 Manual Version Aug-2007

Automatic Modes
Prover9's automatic mode is set by default. Otter's automatic mode must be explicitly set.

If you simply give Prover9 a set of clauses and/or formulas, Prover9 will look at the clauses and decide which
inference rules and clause-processing operations to use. If you don't like the automatic decisions that Prover9
makes, you can clear the flag auto or any of the secondary auto flags that depend on it. Prover9 output files
show in detail the effects of changing these flags.

set(auto). % default set
clear(auto).

This is the basic automatic mode of Prover9. The only direct effect of this flag is that it changes
four secondary auto flags as follows.

 set(auto) -> set(auto_inference).
 set(auto) -> set(auto_process).
 set(auto) -> set(auto_limits).
 set(auto) -> set(auto_denials).

 clear(auto) -> clear(auto_inference).
 clear(auto) -> clear(auto_process).
 clear(auto) -> clear(auto_limits).
 clear(auto) -> clear(auto_denials).

Any of the secondary flags, as well as the entire automatic mode can be cleared by the user.

set(auto_inference). % default set
clear(auto_inference).

If this flag is set, the input clauses are checked for several syntactic properties such as the
presence of equality and non-Horn clauses. Based on the results of the checks, Prover9 decides
which inference rules to use. In addition, changing this flag causes the following changes.

 set(auto_inference) -> set(predicate_elim).
 set(auto_inference) -> assign(eq_defs, unfold).

 clear(auto_inference) -> clear(predicate_elim).
 clear(auto_inference) -> assign(eq_defs, pass).

set(auto_process). % default set
clear(auto_process).

Prover9 Manual

Automatic Modes 19

This flag causes several other flags that affect clause processing to be altered based syntactic
properties of the initial clauses.

If all clauses are Horn and there are negative nonunits, the flag back_unit_deletion is
automatically set. If there are non-Horn clauses, the flags back_unit_deletion and
factor are automatically set.

Unlike ordinary option dependencies, the options that are changed by auto_process cannot
be undone by placing commands in the input file, because they depend on the structure of the
clauses.

set(auto_limits). % default set
clear(auto_limits).

The only effect of changing this flag is that two parameters are changed in the following ways.

 set(auto_limits) -> assign(max_weight, 100).
 set(auto_limits) -> assign(sos_limit, 10000).

 clear(auto_limits) -> assign(max_weight, INT_MAX).
 clear(auto_limits) -> assign(sos_limit, -1).

An Experimental Automatic Mode

set(auto2).
clear(auto2). % default clear

This is an enhanced automatic mode, developed in preparation for CASC-2005. The only direct
effect of changing this option is that it causes several other options to be changed. See an output
file to see the effects of setting this flag.

Automatically Adjusting the sos_limit Parameter

assign(lrs_ticks, n). % default n=-1, range [-1 .. INT_MAX]

assign(lrs_interval, n). % default n=50, range [1 .. INT_MAX]

assign(min_sos_limit, n). % default n=0, range [0 .. INT_MAX]

These three parameters work together and are used to automatically adjust the parameter
sos_limit by means of a "limited resource strategy" [RV-lrs]. If lrs_ticks ≥ 0, the method
is applied.

This is an experimental feature and is not recommended for general use.

Next Section: Term Ordering

Prover9 Manual

20 An Experimental Automatic Mode

Prover9 Manual Version Aug-2007

Term Ordering
Prover9's term ordering procedures and options are simpler than Otter's, but somewhat less
flexible. We recommend that those who use Otter's "ad hoc" ordering try Prover9's KBO
ordering.

Prover9 has available several methods for comparing terms. (Although atomic formulas, literals, and clauses are
not, strictly speaking, terms, the term orderings we write about here apply to those objects as well.)

The term orderings are partial (and sometimes total on ground terms), and they are used in two ways.

To orient equalities (positive and negative). If one side of the equality is greater than the other, the greater
side is placed on the left-hand side, and the equality is marked as oriented.

•

To decide which literals in clauses are admissible for application of inference rules. Several of the
resolution and paramodulation rules require that some of the literals be maximal in their clause.

•

For many problems, a good term ordering can determine the difference between success and failure. The default
settings work well in many cases, but many difficult problems require adjustments to the term ordering.

The primary choice (via parameter order) is type of ordering: LPO, RPO, or KBO. Each of those types uses a
symbol precedence (see the function_order and predicate_order commands), and KBO also uses a
symbol weighting function (see the list(kbo_weights) command). In addition, the options eq_defs and
inverse_order cause changes to the term ordering.

See [Dershowitz-termination] for a survey on term ordering.

The Primary Choice

The symbol precedence is is a total order on function and predicate symbols (including constants). The symbol
weighting function maps symbols to nonnegative integers.

LPO (Lexicographic Path Ordering). The term ordering is determined entirely by the symbol precedence.
It is total on ground terms.

•

RPO (Recursive Path Ordering). The term ordering is determined entirely by the symbol precedence. It is
not necessarily total on ground terms, because the order of subterms is not considered.

•

KBO (Knuth-Bendix Ordering). This ordering uses a weighting function on symbols as well as the
symbol precedence. The weighting function is used first, and the symbol precedence breaks ties. It is total
on ground terms.

•

KBO is perhaps the most natural of the three, because it it based on weights of symbols, but it is more
cumbersome to specify because it is determined both by the symbol weights and by the symbol precedence.
However, if one of the two terms being compared has more occurrences of a variable, it cannot be smaller. For

Prover9 Manual

Term Ordering 21

example, the distributivity equation cannot be oriented so that it distributes (expands) terms.

LPO is perhaps the most powerful of the three, because it can usually orient more equations. However, it allows
rewrite rules that expand terms in explosive ways, for example (this is from a real problem),

(x * y) * z rewrites to E * (x * (E * (x * (E * (y * (E * (x * (E * (x
* (E * z))))))))))

RPO is perhaps the least useful of the three, because it is not necessarily total on ground terms. That is, not all
ground equations can be oriented. Also, see the sections on demodulation options and on inference rules.

The reasonable choice is usually between LPO (the default) and KBO. For many problems, either one is good.
The main reason LPO is the the default is that it is a bit faster than KBO.

Here is the primary option.

assign(order, string). % default string=lpo, range [lpo,rpo,kbo]

This option is used to select the primary term ordering to be used for orienting equalities and for
determining maximal literals in clauses. The choices are lpo (Lexicographic Path Ordering),
rpo (Recursive Path Ordering), and kbo (Knuth-Bendix Ordering).

Termination of Demodulation

If each member of a set of demodulators (rewrite rules) is oriented with respect to the current ordering (LPO,
RPO, or KBO), then demodulation (term rewriting) is guaranteed to terminate (in theory) on all terms, regardless
of the the order in which the demodulators are applied or the order in which the subject terms are demodulated.
However, there are sets of demodulators that are intractable in practice.

The Default Term Ordering

The default symbol precedence (for LPO, RPO, and KBO) is given by the following rules (in order).

function symbols < equality symbol < non-equality predicate symbols;•
if the term ordering is KBO, and if there is exactly one unary function in the problem, that function is
greater than all other functions;

•

function symbols: arity-0 < arity-2 < arity-1 < arity-3 < arity-4 ... (note the position of arity-1);•
non-equality predicate symbols: lower arity < higher arity;•
non-Skolem symbols < Skolem symbols;•
for Skolem symbols, the lower index is the lesser;•
for non-Skolem symbols, more occurrences < fewer occurrences;•
the lexical ASCII ordering (UNIX strcmp() function).•

The specific symbol precedence for a problem is given in the output file in the section PROCESS INPUT.

The default symbol-weighting function for KBO is given by the following rules.

Variables have weight 1;•
if there is exactly one unary function in the problem, it has weight 0;•
all other symbols have weight 1.•

Prover9 Manual

22 The Primary Choice

Adjustments to the Term Ordering

The Symbol Precedence

The function_order and predicate_order commands can be used to assign a symbol precedence. (The
lex command is synonym for function_order.) They contain lists of symbols ordered by increasing
precedence. For example,

predicate_order([=, <=, P, Q]). % = < P < Q
function_order([a, b, c, +, *, h, g]). % a < b < c < + < * < h < g

There are two separate commands, because presecate symbols are always greater than function symbols.

If there are function or predicate symbols in the problem that do not appear in the corresponding command, a
warning is issued, and Prover9 will complete the precedence inserting the missing symbols at the beginning of the
precedence using its default rules. In these cases, the user should check that Prover9 has constructed a reasonable
precedence.

Note that Skolem symbols cannot appear in a function_order command, because Skolem symbols do not exist at
the time the function_order command is written. If there is a function_order command, and if Skolem symbols are
generated, each one will be inserted, in effect, into the function_order command at a position just before the first
symbol of higher arity. This method gives a symbol precedence similar to the default in many cases.

Otter's lex command has a syntax that shows the arities of the symbols; Prover9's function_order
and predicate_order commands list only the symbols. The arities are not necessary for Prover9,
because a string cannot represent two symbols with different arities.

The KBO Weights

If the term ordering is KBO, assign(order, kbo), the user can change the default symbol-weighting
function. For example,

list(kbo_weights).
 a = 3.
 b = 2.
 * = 5.
 j = 22.
end_of_list.

(This has no relationship to the term-weighting function for selecting the given clause and discarding inferred
clauses.)

If any symbols are absent from the list, they retain their default KBO weights of 1. The symbol weights must be
greater than 0, with the exception that there may be one unary symbol of weight 0. (The definition of KBO allows
for one unary symbol of weight 0 which must also be greatest in the precedence. This special case allows an such
as g(f(x,y)) = f(g(y),g(x)) to be oriented as shown and used as a rewrite rule.)

Term Ordering Options

set(inverse_order). % default set

Prover9 Manual

Adjustments to the Term Ordering 23

clear(inverse_order).

If this flag is set, if there is no function_order command (which defines the function symbol
precedence), and if the term ordering is LPO or RPO, then Prover9 will attempt to adjust the
default symbol precedence if there are any input equations that specify an inverse operation. For
example, if f(x,g(x)) = c is input, g will be placed after f in the precedence. This allows an
equation such as g(f(x,y)) = f(g(y),g(x)) to be oriented as shown for demodulation
and paramodulation. If this flag is set, the PROCESS INPUT section of the output file shows
how the flag changes the symbol precedence.

assign(eq_defs, string). % default string=unfold, range [unfold,fold,pass]

If string=unfold, and if the input contains an equational definition, say j(x,y) =
f(f(x,x),f(y,y)), the defined symbol j will be eliminated from the problem before the
search starts. This procedure works by adjusting the symbol precedence so that the defining
equation becomes a demodulator. If there is more than one equational definition, cycles are
avoided by choosing a cycle-free subset of the definitions. If the primary term ordering is KBO,
this option may admit demodulators that do not satisfy the KBO ordering, because a variable may
have more variables on the right-hand side. However, this exception is safe (does not cause
non-termination).

If string=fold, and if the input contains an equational definition, say j(x,y) =
f(f(x,x),f(y,y)), the term ordering will be adjusted so that equation is flipped and
becomes a demodulator which introduces the defined symbol whenever possible during the
search.

If string=pass, nothing special happens. In this case, functions may still be unfolded or folded if
the term ordering and symbol precedence happen to arrange the demodulators to do so.

Next Section: More Prep

Prover9 Manual

24 Term Ordering Options

Prover9 Manual Version Aug-2007

More Search Prep

set(expand_relational_defs).
clear(expand_relational_defs). % default clear

If this flag is set, Prover9 looks for relational definitions in the assumptions and uses them to
rewrite all occurrences of the defined relations elsewhere in the input, before the start of the
search. The expansion steps are detailed in the output file and appear in proofs with the
justification expand_def.

Relational definitions must be closed formulas for example,

formulas(assumptions).
 all x all y all z (A(x,y,z) ((x <= y & y <= z) | (z <= y & y <= x))).
end_of_list.

If there are circular definitions, Prover9 will immediately exit with a fatal error.

This flag eliminates predicate symbols, and its effects overlap somewhat with the flag
predicate_elim.

Here is a trivial example, using the transitivity-of-subset problem.

prover9 -f subset_trans_expand.in > subset_trans_expand.out

For more examples using this flag, see the problem set "Ternary Relations in Lattices", which is
available from the Prover9 Web page.

set(predicate_elim). % default set
clear(predicate_elim).

If this flag is set, Prover9 applies a procedure that attempts to eliminate predicate symbols from
the problem before the start of the search. The eliminations occur by resolution, and those steps
show up as ordinary resolution inferences in any proofs that are found. The procedure works by
selecting an eliminable predicate symbol, say P, then doing some set of resolution inferences on
P, then removing all clauses that contain P. The procedure is intended to preserve unsatisfiability.

The effects of this flag overlap somewhat with expand_relational_defs, which also
eliminates predicate symbols.

assign(fold_denial_max, n). % default n=0, range [-1 .. INT_MAX]

Prover9 Manual

More Search Prep 25

http://www.cs.unm.edu/~mccune/prover9/

This parameter applies to negated ground input equalities in which neither side is a constant, say
f(a,b) != f(b,a). If the left-hand side has fewer than n symbols, a new constant is
introduced and set equal to the left-hand side. This operation is applied to at most one clause in
the input sos list.

set(sort_initial_sos).
clear(sort_initial_sos). % default clear

If this flag is set, the sos list is sorted just before the start of the search. The order (somewhat
arbitrary) is

positive clauses < negative clauses < mixed clauses;♦
fewer symbols < more symbols;♦
fewer literals < more literals;♦
shallower < deeper.♦

set(process_initial_sos). % default set
clear(process_initial_sos).

If this flag is set, clauses in the initial sos list will be handled (with a few exceptions) as if they
were inferred. For example, demodulation, subsumption, and the check for unit conflict will be
applied. The exceptions are that none of max_weight, max_vars, max_depth, or
max_literals will be applied. (These four parameters are never applied before the first given
clause is selected.)

This flag should be cleared only in very rare circumstances.

Next Section: Search Limits

Prover9 Manual

26 More Search Prep

Prover9 Manual Version Aug-2007

Search Limits

assign(sos_limit, n). % default n=20000, range [-1 .. INT_MAX]

This parameter imposes a limit on the size of the sos list (n=-1 means there is no limit). It also
activates a method for deleting clauses (in addition to, and after, application of the max_weight
parameter).

This is a little bit tricky (and sometimes too clever for its own good). When the sos is half full, it
starts being selective about keeping clauses, and as it fills up, it gradually becomes more
selective. When it is full, it is very selective about keeping clauses. (The method is not applied to
clauses that match hints.) When it decides to keep a clause, and the sos is already full, the
"worst" clause in sos is deleted to make room for the new clause.

More details will be added later.

assign(max_given, n). % default n=-1, range [-1 .. INT_MAX]

This parameter will stop the search after n given clauses have been used. A value of -1 means that
there is no limit.

assign(max_kept, n). % default n=-1, range [-1 .. INT_MAX]

The search will stop when more than n clauses have been retained.

assign(max_megs, n). % default n=200, range [-1 .. INT_MAX]

The search will stop when about n megabytes of memory have been used.

assign(max_seconds, n). % default n=-1, range [-1 .. INT_MAX]

The search will stop at about n seconds. For UNIX-like systems, the "user CPU" time is used.

assign(max_minutes, n). % default n=-1, range [-1 .. INT_MAX]

Changing this parameter simply changes max_seconds to the corresponding value.

Prover9 Manual

Search Limits 27

assign(max_hours, n). % default n=-1, range [-1 .. INT_MAX]

Changing this parameter simply changes max_seconds to the corresponding value.

assign(max_days, n). % default n=-1, range [-1 .. INT_MAX]

Changing this parameter simply changes max_seconds to the corresponding value.

Next Section: The Loop

Prover9 Manual

28 Search Limits

Prover9 Manual Version Aug-2007

The Inference Loop
The main loop for inferring and processing clauses and searching for a proof is sometimes called the given clause
algorithm. It operates mainly on the sos and usable lists.

While the sos list is not empty:
 1. Select a given clause from sos and move it to the usable list;
 2. Infer new clauses using the inference rules in effect;
 each new clause must have the given clause as one of its
 parents and members of the usable list as its other parents;
 3. process each new clause;
 4. append new clauses that pass the retention tests to the sos list.
end of while loop.

Two Frequently Asked Questions

At some point in the search, Prover9 has all of the clauses needed to make an important
inference, and one of the potential parents is selected as the given clause. But Prover9 fails to
make the inference. Why is that?

Why do all parents have to be in the usable list?

The answer to both questions is the same, and it has to do with redundancy. Assume

clause C can be inferred from clauses A and B;•
both A and B are in the sos list; and•
A is selected first.•

According to the algorithm, C is not derived until B has also been selected. Otherwise, C would be derived twice
from A and B.

Variations of the Loop

There are two common versions of the given clause algorithm that differ in how and when simplification (i.e.,
rewriting) occurs.

In the Otter loop, which Prover9 uses, clauses in the sos list can simplify new clauses, and new simplifiers are
applied immediately to all clauses, including sos clauses.

In the Discount loop, clauses in the sos list (also called the passive list) cannot simplify or be simplified until
they are selected as given clauses.

Prover9 Manual

The Inference Loop 29

The tradeoff between the two versions is straightforward --- the Otter loop spends much more time simplifying
with the possible benefit of making an important simplification sooner.

Next Section: Select Given

Prover9 Manual

30 Variations of the Loop

Prover9 Manual Version Aug-2007

Selecting the Given Clause
At each iteration of the main loop, Prover9 selects a given clause from the sos list, moves it to the usable list,
and makes inferences from it and other clauses in the usable list.

A basic way to select the given clause is to always select the lightest clause in sos. Otter has the ability to mix
two methods of selecting the given clause in a ratio determined by a parameter --- selecting the lightest clause and
selecting the oldest clause. This method adds a breadth-first component to the search. See the
pick_given_ratio parameter below.

Prover9 uses six components in selecting the given clause. The following six options are used.

assign(age_part, n). % default n=1, range [0 .. INT_MAX]

assign(weight_part, n). % default n=0, range [0 .. INT_MAX]

assign(false_part, n). % default n=4, range [0 .. INT_MAX]

assign(true_part, n). % default n=4, range [0 .. INT_MAX]

assign(random_part, n). % default n=0, range [0 .. INT_MAX]

assign(hints_part, n). % default n=INT_MAX, range [0 .. INT_MAX]

These six parameters work together to specify a 6-way ratio for selection of the given clauses:

age_part refers to the clause with lowest ID (the oldest clause),♦
weight_part refers to the (oldest) clause with lowest weight,♦
false_part refers to the (oldest) lightest false clause,♦
true_part refers to the (oldest) lightest true clause,♦
random_part refers to a (pseudo-) random clause,♦
hints_part refers to the lightest clause that matches a hint.♦

The false/true distinction is determined by a set of interpretations. The default interpretation is
that negative clauses are false and non-negative clauses are true. To use explicit interpretations,
see the section on semantic guidance.

Under the default interpretation, for example, if age_part = 1, false_part = 2, and
true_part = 3, given clauses will be selected in a cycle of size six: one clause by lowest ID,
then two clauses because they are the lightest negative (i.e., false) clauses, then three clauses

Prover9 Manual

Selecting the Given Clause 31

because they are the lightest non-negative (i.e., true) clauses. And so on.

If a clause of required type is not available, that component of the ratio is simply skipped. For
example, with ratio in the preceding paragraph, if no false clauses are available, the cycle has size
four (one part age, 3 parts true clauses) until some false clauses become available.

Note that the default value of hints_part is INT_MAX. This means that whenever the
selection cycle gets to the hints_part, clauses that match hints will be selected as long as any
are available.

When a given clause is printed, its sequence number, the reason it was selected, its weight, and its ID are also
shown as in the following excerpt.

given #1 (I,wt=7): 9 x v y = y v x. [input].
...
given #18 (T,wt=5): 28 x v x = x. [para(13(a,1),14(a,1,2))].
given #19 (A,wt=11): 18 x ^ (y ^ z) = y ^ (x ^ z). [para(11(a,1),12(a,1,1)),demod(12(2))].
given #20 (F,wt=21): 43 x ^ (((x v y) ^ z) v ((x v z) ^ y)) = (x ^ z) v (x ^ y) # label(false). [para(11(a,1),32(a,1,2,2))].

The selection codes are A=age, W=weight, F=false, T=true, H=hints, R=random, and I=input (see flag
input_sos_first).

More selection criteria will likely be added in future versions of Prover9.

Other Options

set(default_parts). % default set
clear(default_parts).

If this flag is cleared, all of the selection parts, including hints, are set to 0. If it is set, the
selection parts are reset to their defaults. This flag operates by making the following changes.

 clear(default_parts) -> assign(hints_part, 0).
 clear(default_parts) -> assign(weight_part, 0).
 clear(default_parts) -> assign(age_part, 0).
 clear(default_parts) -> assign(false_part, 0).
 clear(default_parts) -> assign(true_part, 0).
 clear(default_parts) -> assign(random_part, 0).

 set(default_parts) -> assign(hints_part, INT_MAX).
 set(default_parts) -> assign(weight_part, 0).
 set(default_parts) -> assign(age_part, 1).
 set(default_parts) -> assign(false_part, 4).
 set(default_parts) -> assign(true_part, 4).
 set(default_parts) -> assign(random_part, 0).

assign(pick_given_ratio, n). % default n=0, range [0 .. INT_MAX]

If n>0, the given clauses are chosen in the ratio one part by age, and n parts by weight. The
false/true distinction is ignored. This parameter works by making the following changes. (Note
that this parameter does not alter hints_part, so that clauses matching hints may still be
selected.)

Prover9 Manual

32 Other Options

 assign(pick_given_ratio, n) -> assign(age_part, 1).
 assign(pick_given_ratio, n) -> assign(weight_part, n).
 assign(pick_given_ratio, n) -> assign(false_part, 0).
 assign(pick_given_ratio, n) -> assign(true_part, 0).
 assign(pick_given_ratio, n) -> assign(random_part, 0).

set(lightest_first).
clear(lightest_first). % default clear

If this flag is set, the given clauses are selected by weight, lightest first. This flag operates by
making the following changes. (Note that this flag does not alter hints_part, so that clauses
matching hints may still be selected.)

 set(lightest_first) -> assign(weight_part, 1).
 set(lightest_first) -> assign(age_part, 0).
 set(lightest_first) -> assign(false_part, 0).
 set(lightest_first) -> assign(true_part, 0).
 set(lightest_first) -> assign(random_part, 0).

set(breadth_first).
clear(breadth_first). % default clear

If this flag is set, the sos list operates as a queue, giving a breadth-first search. That is, the oldest
clause is selected as the given clause. This flag operates by making the following changes. (Note
that this flag does not alter hints_part, so that clauses matching hints may still be selected.)

 set(breadth_first) -> assign(age_part, 1).
 set(breadth_first) -> assign(weight_part, 0).
 set(breadth_first) -> assign(false_part, 0).
 set(breadth_first) -> assign(true_part, 0).
 set(breadth_first) -> assign(random_part, 0).

set(random_given).
clear(random_given). % default clear

If this flag is set, a random clause is selected from the sos list. This flag operates by making the
following changes. (Note that this flag does not alter hints_part, so that clauses matching
hints may still be selected.)

 set(random_given) -> assign(random_part, 1).
 set(random_given) -> assign(age_part, 0).
 set(random_given) -> assign(weight_part, 0).
 set(random_given) -> assign(false_part, 0).
 set(random_given) -> assign(true_part, 0).

assign(random_seed, n). % default n=0, range [-1 .. INT_MAX]

This parameter determines the seed for the (pseudo-) random number generator, which is used for
the parameter random_part (and maybe also for other purposes). The system library functions
rand() and srand() are used for random number generation.

Prover9 Manual

Other Options 33

If n ≥ 0, it is used as the seed. If n = -1, Prover9 selects a seed, based on the value of the system
clock; in this case, Prover9 jobs are not reproducibe.

set(input_sos_first). % default set
clear(input_sos_first).

If this flag is set, the clauses in the initial sos list are selected as given clauses (in the order in
which they occur in the sos list) before any derived clauses are selected. This flag allows heavy
input clauses to enter the search right away. After the initial clauses have been selected, the
ordinary selection ratio, takes over.

Next Section: Inference Rules

Prover9 Manual

34 Other Options

Prover9 Manual Version Aug-2007

Inference Rules
When a given clause is selected, all of the enabled inference rules are applied to it. For each inference, one of the
parents is the given clause, and all other parents must be in the usable list.

Most inference rules distinguish the parents by the roles they play in the inference, e.g., positive or negative literal
for binary resolution, nucleus or satellite for hyper rules, and from and into for paramodulation. The given clause
can play any role in the inference.

After an inference rule generates a new clause, the clause is processed, which includes simplification operations
such as demodulation and unit_deletion, and retention tests, such as max_weight. Processing also
includes several operations that might be considered inference rules, such as factor and new_constants.

Prover9 uses ordered resolution and paramodulation with literal selection. These methods restrict the literals that
are eligible for inference. The resolution and paramodulation inference rules are intended to be complete
(exceptions are given in the descriptions of the options below), but we have not done a rigorous analysis of the
algorithms, so users should not make any assumptions about completeness. For an overview of ordered inference
with literal selection, see the section Ordered Inference below.

Binary Resolution Rules and Options

set(binary_resolution).
clear(binary_resolution). % default clear

If this flag is set, binary resolution will be applied to the given clause. The options
literal_selection, ordered_res, and check_res_instances determine eligible
literals.

set(neg_binary_resolution).
clear(neg_binary_resolution). % default clear

If this flag is set, negative binary resolution is applied to the given clause. That is, the negative
resolved literal must be in a clause in which all literals are negative. The options ordered_res,
and check_res_instances are also used to determine eligible literals.

Note that there is no inference rule "pos_binary_resolution". Positive binary resolution can be
achieved by using the parameter literal_selection so that at least one negative literal is
always selected. Positive binary resolution is not the dual of neg_binary_resolution,
because the literal_selection technique is not symmetric between positive and negative
literals; in particular, selected literals are always negative. The literal_selection
parameter is always ignored for negative binary resolution.

Prover9 Manual

Inference Rules 35

set(ordered_res). % default set
clear(ordered_res).

This option puts restrictions on the binary and hyperresolution inference rules (but not on
UR-resolution). It says that resolved literals in one or more of the parents must be maximal in the
clause.

See the section Ordered Inference below.

set(check_res_instances).
clear(check_res_instances). % default clear

This flag applies to the binary and hyperresolution inference rules if the flag ordered_res is
also set. If check_res_instances is set, the ordered_res test is is applied after the
substitution for the inference has been applied to the parents.

assign(literal_selection, string). % default string=maximal_negative, range [maximal_negative, all_negative, none]

This parameter affects to the inference rules binary_res and paramodulation. It
determines which literals are eligible for inference. Here are the accepted values.

maximal_negative: negative literals that are maximal w.r.t. the negative literals of
the clause are marked;

♦

all_negative: all negative literals are marked;♦
none: no literals are marked;♦

If at least one negative literal is always selected (e.g., maximal_negative or
all_negative), binary resolution will be positive binary resolution, and paramodulation will
be positive paramodulation.

Literal selection is ordinarily used with ordered inference (flags ordered_res and
ordered_para), but it can be used without ordered inference.

set(positive_inference). % default set
clear(positive_inference).

The only direct effect of this flag is that setting it causes the literal_selection parameter
to be changed as follows.

 set(positive_inference) -> assign(literal_selection, maximal_negative).

This setting causes binary_resolution to be positive binary resolution, and
paramodulation to be positive paramodulation.

Hyper and UR Resolution Rules and Options

The Hyper and UR resultion rules can resolve more than one literal of one of the parent clauses (the nucleus) with
other parent clauses (the satellites), all in one step. An application of one of these inference rules can be viewed as
a sequence of binary resolution steps.

Prover9 Manual

36 Binary Resolution Rules and Options

set(pos_hyper_resolution).
clear(pos_hyper_resolution). % default clear

If this flag is set, positive hyperresolution (usually called simply hyperresolution) is applied to the
given clause. If the flag ordered_res is set, the resolved literals in the satellites (positive
parents) must be maximal. If the flags ordered_res and check_res_instances are both
set, the maximality check is done after the substitution for the inference has been applied to the
parents. Literal selection is not applied to hyperresolution.

set(hyper_resolution).
clear(hyper_resolution). % default clear

This flag is a synonym for pos_hyper_resolution. The only effect of changing this flag is
to make the corresponding change to the flag pos_hyper_resolution.

set(neg_hyper_resolution).
clear(neg_hyper_resolution). % default clear

If this flag is set, negative hyperresolution is applied to the given clause. If the flag
ordered_res is set, the resolved literals in the satellites (negative parents) must be maximal. If
the flags ordered_res and check_res_instances are both set, the maximality check is
done after the substitution for the inference has been applied to the parents. Literal selection is not
applied to hyperresolution.

set(ur_resolution).
clear(ur_resolution). % default clear

If this flag is set, UR resolution (unit-resulting resolution) is applied to the given clause. In fact,
the only effect of this flag is that it automatically sets the flags pos_ur_resolution and
neg_ur_resolution

UR resolution may be incomplete when there are non-Horn clauses.

set(pos_ur_resolution).
clear(pos_ur_resolution). % default clear

If this flag is set, positive UR resolution is applied to the given clause. That is, the resulting unit
clause is a positive clause. Neither ordering constraints nor literal selection is applied to UR
resolution.

set(neg_ur_resolution).
clear(neg_ur_resolution). % default clear

If this flag is set, negative UR resolution is applied to the given clause. That is, the resulting unit
clause is a negative clause. Neither ordering constraints nor literal selection is applied to UR
resolution.

Prover9 Manual

Hyper and UR Resolution Rules and Options 37

set(initial_nuclei).
clear(initial_nuclei). % default clear

This flag puts a restriction on the nucleus for the hyperresolution and UR-resolution inference
rules. It says that each nucleus must be an input clause (more precisely, an initial clause).

Setting this flag may cause incompleteness of the inference system.

assign(ur_nucleus_limit, n). % default n=-1, range [-1 .. INT_MAX]

If n != -1, then the nucleus for each UR-resolution inference can have at most n literals.

This option may cause incompleteness of the inference system.

Paramodulation Rules and Options

set(paramodulation).
clear(paramodulation). % default clear

If this flag is set, paramodulation is applied to the given clause. If the from literal is oriented
(oriented equalities are always heavy=light), the paramodulation is applied left-to-right. If the
from literal cannot be oriented Prover9 attempts to paramodulate from both sides of it. Unlike the
inference rule superposition, this inference rule goes into "light" sides of equations.

If the flag ordered_para is also set, ordered paramodulation is used.

If paramodulation involves non-unit clauses, literal_selection is used to determine
eligible literals.

Setting the flag paramodulation causes the flag back_demod to be automatically set. Back
demodulation can be disabled by placing clear(back_demod) after
set(paramodulation) in the input file.

set(ordered_para). % default set
clear(ordered_para).

This flag places a restrictions on the paramodulation inference rule, based on maximal
literals. See the section Ordered Inference.

set(check_para_instances).
clear(check_para_instances). % default clear

This flag applies to the paramodulation inference rule and is analogous to the flag
check_res_instances for binary_resolution. It says to apply the ordering tests after
the substitution for the inference has been applied to the parent claues.

set(para_from_vars). % default set

Prover9 Manual

38 Paramodulation Rules and Options

clear(para_from_vars).

This flag says that paramodulation may occur from variables. That is, a literal x=t, in which x
does not ocur in t, may be used as the from literal, unifying arbitrary terms with x, and replacing
them with t.

For (unit) equational problems, this flag is nearly always irrelevant.

Clearing this flag may cause incompleteness of the inference system.

assign(para_lit_limit, n). % default n=-1, range [-1 .. INT_MAX]

If n ≠ -1, each parent in paramodulation can have at most n literals. This option may cause
incompleteness of the inference system.

set(para_units_only).
clear(para_units_only). % default clear

This flag says that both parents for paramodulation must be unit clauses. The only effect of this
flag is to assign 1 to the parameter para_lit_limit.

Setting this flag may cause incompleteness of the inference system.

set(basic_paramodulation).
clear(basic_paramodulation). % default clear

This option hasn't been implemented yet.

Ordered Inference

This section contains a practical overview of ordered inference as implemented in Prover9. For theoretical
presentations, see [Bachmair-Ganzinger-res] and [Nieuwenhuis-Rubio-para].

Prover9 uses ordered inference with literal selection.

Ordered inference.Within a clause, there is a partial order on literals, determined by the term ordering. A
subset of the literals is marked as maximal. (If the clause is ground, the order is total, and the greatest
literal is marked as maximal.) The inference rules may be restricted in some cases so that they apply only
to maximal literals.

•

Literal selection. In each clause, a subset of the negative literals of a clause is marked as selected.
(Different clauses may have the subset chosen by different methods.) The inference rules may be
restricted in some cases so that they apply only to selected literals.

•

Ordered inference and literal selection are typically used together, but each can be used without the other, by
changing the options ordered_res and literal_selection. In the following, if ordered_res is
disabled, simply assume all literals are maximal. The setting assign(literal_selection, none) has
the effect of disabling literal selection.

Prover9 Manual

Ordered Inference 39

Ordered Binary Resolution with Literal Selection

A positive literal PL in a clause C is eligible for resolution if
 no literal is selected in C, and PL is maximal in C.

A negative literal NL in a clause C is eligible for resolution if
 (1) NL is selected in C, or
 (2) no literal is selected in C, and NL is maximal in C.

Note that if at least one negative literals is selected in every clause, we have a version of positive binary
resolution, because no literal may be selected in the clause containing the positive resolved literal.

Ordered Factoring

Prover9 does not do ordered factoring. Instead, if factoring is enabled (see flag factor), factoring is applied as
much as possible to all newly kept clauses. In theory, factoring can be restricted to maximal literals without losing
completeness, but we believe applying it eagerly is more practical.

Ordered Paramodulation with Selection

For ordered paramodulation with selection, literal eligibility for the "from" literal is that same as eligibilty of the
positive literal for ordered resolution with selection.

Literal eligibility for positive "into" literals is that same as eligibilty of the positive literal for ordered resolution
with selection.

Literal eligibility for negative "into" literals is the same as eligibilty of the negative literal for ordered resolution
with selection.

In other words,

A positive literal PL in a clause C is eligible for paramodularion
 (as the "from" or the "into" parent) if no literal is selected in C,
 and PL is maximal in C.

A negative literal NL in a clause C is eligible for paramodulation if
 (1) NL is selected in C, or
 (2) no literal is selected in C, and NL is maximal in C.

Negative Ordered Binary Resolution

A positive literal NL in a clause C is eligible for resolution if
NL is maximal among the positive literals of C.

A negative literal NL in a clause C is eligible for resolution if
C has no positive literals, and NL is maximal in C.

Note that negative ordered binary resolution is not the dual of positive ordered binary resolution, because the
negative version ignores literal selection.

Next Section: Process Inferred

Prover9 Manual

40 Ordered Binary Resolution with Literal Selection

Prover9 Manual Version Aug-2007

Processing Inferred Clauses
Processing of inferred clauses is separated into two stages: (1) simplifying the clause and deciding whether to
keep it, and if it is kept, (2) using the clause to operate on other clauses.

Processing Initial Clauses

Initial clauses in the sos list are processed, for the most part, as if they were derived by some inference rule. This
process helps to ensure that Prover9's working set of clauses starts out in a good state, in particular, that no clause
subsumes another, and that all clauses are simplified according to the working set of demodulators. Note the
following exceptions.

The main exceptions to processing initial clauses is that the parameters max_literals, max_vars,
max_weight, and max_depth are not applied.

•

All processing of initial sos clauses can be disabled by clearing the flag process_initial_sos.•
Clauses in the initial usable list are never processed.•
If there is an initial demodulators list, the clauses therein will be checked. If an equation is orientable
but backward, it will be flipped, and a warning message will be printed. Otherwise, it must satisfy all of
the ordinary constraints on demodulators. Having an initial demodulators list is useful, along with
clearing the flag back_demod, if the user wishes to have a set of demodulators that is fixed throughout
the search.

•

Algorithm for Processing Clauses

Processing initial and inferred clauses.

Start with clause c:
 1. Simplify c:
 1a. demodulate
 1b. orient equalities
 1c. simplify literals
 1d. merge identical literals
 1e. unit_deletion
 1f. cac_redundancy
 2. safe_unit_conflict check
 3. max_literals, max_depth, max_vars, max_weight checks
 4. evaluate for semantic selection
 5. sos_limit check
 6. subsumption check (forward)
 7. assign an ID and keep the clause
 8. unsafe unit conflict check
 9. check if the clause should be a demodulator
 ---- (the following steps are delayed until finished with the given clause) ---
 10. factor c
 11. apply new_constants to c

Prover9 Manual

Processing Inferred Clauses 41

 12. apply back_subsume with c
 13. apply back_demod with c
 14. apply back_unit_deletion with c
 15. move c to the sos list

Restricted denials (see flag restrict_denials) are not subject to the max_weight test.

Options for Processing Inferred Clauses

Demodulation Options

Dedmodulation is the process of using equations (demodulators) to rewrite terms. If a demodulator is oriented by
the term ordering in effect (KBO, LPO, or RPO), it is applied unconditionally, heavy-to-light. If a demodulator is
not oriented, it is applied only if the instance that would be used is oriented.

set(lex_order_vars).
clear(lex_order_vars). % default clear

This flag allows an exception to the rule for applying nonorientable demodulators. If the flag is
set, variables are treated as constants when comparing terms, with the precedence

function_order([x,y,z,u,v,w,v6,v7,v8, ...]).

For example, with the (nonorientable) demodulator x*y = y*x, the term v7*v6 can be
rewritten to v6*v7. Setting this flag can easily block proofs, but it can also drastically reduce the
search space and still allow some proofs to be found.

If you have a difficult problem that involves a commutative, associative-commutative, or some
other permutative operation, we recommend trying this option.

assign(demod_step_limit, n). % default n=1000, range [-1 .. INT_MAX]

This parameter limits the number of rewrite steps that are applied to a clause during
demodulation. If n=-1, there is no limit.

assign(demod_size_limit, n). % default n=1000, range [-1 .. INT_MAX]

This parameter limits the size (measured as symbol count) of terms as they are demodulated. If
any term being demodulated has more than n symbols, demodulation of the clause stops. If n=-1,
there is no limit.

set(back_demod).
clear(back_demod). % default clear

If this flag is set, back demodulation is applied. If an orientable equation is derived, it is appended
to the demodulators list. Non-orientable equations are appended based on the settings of the
flags lex_dep_demod and lex_dep_demod_sane and the parameter
lex_dep_demod_lim.

Prover9 Manual

42 Algorithm for Processing Clauses

If an equation is added to demodulators, Then each clause in usable or sos that can be
rewritten with the equation is copied and deleted, then the copy is treated as if it were generated
by an inference rule. In particular, it will be processed, including demodulation, which will apply
the new demodulator.

set(lex_dep_demod). % default set
clear(lex_dep_demod).

If this flag is set, then non-orientable equations can become demodulators (via the flag
back_demod).

assign(lex_dep_demod_lim, n). % default n=11, range [-1 .. INT_MAX]

This parameter is a limit on the flag lex_dep_demod. A non-orientable equation cannot
become a demodulator if it has more than n symbols. (The equation (x*y)*z=x*(y*z) has 11
symbols.) If n = -1, there is no limit.

set(lex_dep_demod_sane). % default set
clear(lex_dep_demod_sane).

This flag is a restriction on the flag lex_dep_demod. If set, a non-orientable equation can
become a demodulator only if its two sides have the same number of symbols.

set(unit_deletion).
clear(unit_deletion). % default clear

This flag extends demodulation to include rewriting of literals with unit clauses. For example, if
we have the unit clause p(x,a), then we can use it to remove instances of -p(x,a) from
generated clauses. This process is like using the unit clause as the demodulator p(x,a) =
TRUE. (Unit deletion is not actually implemented as demodulation.)

set(back_unit_deletion).
clear(back_unit_deletion). % default clear

This flag is analogous to back demodulation. If set, then each time a unit clause is kept, it is used
to apply unit deletion to all clauses in sos and usable in the same way that
back_demodulation works.

Simplifying and Deciding Whether to Keep Clauses

The options in this section appear in the order in which they are applied.

set(cac_redundancy). % default set
clear(cac_redundancy).

If this flag is set, then an equational redundancy criterion is applied. If Prover9 finds that a binary
operation is commutative or associative-commutative, it makes a note and uses that information

Prover9 Manual

Demodulation Options 43

to simplify clauses that are derived later in the search.

If a derived clause contains an equality alpha=beta, in which alpha and beta are equal with
respect to commutativity or associativity-commutativity of the previously noted operations, the
equality is simplified to TRUE.

For example, if Prover9 notes that x*y=y*x, and then some time later a clause containing the
literal g(u*v)=g(v*u) is derived, that literal will be simplified to TRUE and the clause will be
deleted. (Demodulation will not rewrite the two sides to the same term unless the flag
lex_dep_demod is set.)

assign(max_literals, n). % default n=-1, range [-1 .. INT_MAX]

Clauses containing more than n literals will be deleted. If = -1, there is no limit. This parameter is
never applied to initial clauses or to clauses that match hints.

assign(max_depth, n). % default n=-1, range [-1 .. INT_MAX]

If the depth of the clause is more than n, it will be deleted. If = -1, there is no limit. This
parameter is never applied to initial clauses or to clauses that match hints.

assign(max_vars, n). % default n=-1, range [-1 .. INT_MAX]

Clauses containing more than n (distinct) variables will be deleted. If = -1, there is no limit. This
parameter is never applied to initial clauses or to clauses that match hints.

assign(max_weight, n). % default n=100, range [INT_MIN .. INT_MAX]

Derived clauses with weight greater then n will be discarded. If = -1, there is no limit. This
parameter is never applied to initial clauses or to clauses that match hints.

set(safe_unit_conflict).
clear(safe_unit_conflict). % default clear

This flag provides for a safe, but more expensive, unit conflict test. If set, the unit conflict test
will be done before the max_weight test is applied. If the flag is clear, the test will be done
after the max_weight test is applied, allowing the possibility that a proof will be missed,
because the final step was deleted by the max_weight parameter.

Performing Operations with the New Clause

The options in this section appear in the order in which they are applied.

set(factor).
clear(factor). % default clear

Prover9 Manual

44 Simplifying and Deciding Whether to Keep Clauses

If this flag is set, binary factoring is applied to newly-kept clauses. Note that factoring is an
inference rule rather than a simplification rule, because a child is generated and the parent is
retained. (If the child happens to subsume the parent, the parent will be deleted by the back
subsumption process). Unlike other inference rules such as resolution, factoring is applied to a
clause when it is kept, not when it is given.

assign(new_constants, n). % default n=0, range [-1 .. INT_MAX]

If this parameter is greater than 0, then Prover9 will apply a rule that introduces a new constant
when it derives an equation that shows the existence of a constant. In particular, if a derived
equation has the property that each side has variables and the two sides share no variables, a new
constant will be introduced and set equal to one side of the equation. (Back demodulation will
derive that the constant is equal to the other side.)

For example, if x' * x = y * y' is derived, the equation x' * x = c is produced, where
the constant c does not occur anywhere else.

The value of the parameter limits the number of new constants that can be introduced by this rule.

(There is an extension to this rule that introduces (non-constant) function symbols based on the
intersection of the variables of the two sides. We have not found the extension to be useful in
practice, so we have not included it in Prover9.)

Unlike other inference rules such as resolution, the new_constants rule is applied to a clause
when it is kept, not when it is given.

set(back_subsume). % default set
clear(back_subsume).

If this flag is set, then back subsumption is applied with all new clauses. That is, when a new
clause is kept, each clause subsumed by the new clause is deleted.

Next Section: Output Files

Prover9 Manual

Performing Operations with the New Clause 45

Prover9 Manual

46 Performing Operations with the New Clause

Prover9 Manual Version Aug-2007

Output Files
Even when Prover9 fails to find a proof, its output file usually has lots of valuable information about the search.
The output file can suggest many ways of improving the search for subsequent jobs as in the following examples.

The output shows how equalities are oriented; different term ordering parameters may give better or more
intuitive orientations.

•

If Prover9 focused the search on uninteresting clauses (see the sequence of given clauses), different
inference rules, a different pick_given_ratio, or a specialized weighting function can be used.

•

If Prover9 ran out of time or memory with a huge sos list and small usable list (i.e., few given clauses
were used), the sos_limit should be reduced.

•

Basic Structure of Output Files

Prover9 output files are divided into sections and subsections so the users (people and programs) can find what
they are looking for. The delimiters are self-explanatory. A few comments about the sections are given here. For a
specific example, see the output file subset_trans.out.

============================== Prover9 ===============================
Version, date, host computer, command.

============================== end of head ===========================

============================== INPUT =================================
Echo of the input. Everything in this section that is not

 in the input is commented with "%", so copy-and-paste can be
 done on this section to create a new input file.
============================== end of input ==========================

============================== PROCESS GOALS =========================
The search is always by refutation, and this section shows

 how goals are negated in preparation for the search.
============================== end of process goals ==================

============================== PROCESS INITIAL CLAUSES ===============
This section shows the starting clauses (after Skomemization,

 if applicable) and then some of what Prover9 does in preparation
 for the search. This includes predicate_elim, term ordering
 decisions, and auto_inference settings. At this stage, clauses
 may be deleted by subsumption and equations may be copied to the
 list demodulators. See the flag process_initial_sos.
============================== end of process initial clauses ========

============================== CLAUSES FOR SEARCH ====================
This section shows the clauses just before the start of the

 search, that is, just before selection of the first given clause.

============================== end of clauses for search =============

Prover9 Manual

Output Files 47

============================== SEARCH ================================
This section typically shows the sequence of given clauses,

 and it may also include PROOF and STATISTICS sections.

============================== PROOF =================================
A proof in standard form.

============================== end of proof ==========================

============================== STATISTICS ============================
We encourage users to look at statistics!

============================== end of statistics =====================

============================== end of search =========================

Clause Justifications

After the initial stage of the output, each clause in the file has an integer identifier (ID) and a justification that
may refer to IDs of other clauses. A justification is a list consisting of one primary step and some number of
secondary steps. Most primary steps are inference rules applied to given clauses, and most secondary steps consist
of simplification, rewriting, or orienting equalities.

Many of the types of step refer to positions of literals or terms in the parent clauses. Literals are identified by the
characters 'a' (first literal), 'b' (second literal), etc. Terms are identified by the literal identifier followed by a
sequence of integers giving the position of the term within the literal. For example, the position 'c,1,3,2' means
third literal, first argument, third argument, second argument. Negation signs on literals are not included in the
sequence.

Primary Steps.

assumption -- input formula.•
clausify -- from CNF translation of a non-clausal assumption.•
goal -- input formula.•
deny -- from CNF translation of the negation of a goal.•
resolve(59,b,47,c) -- resolve the second literal of clause 59 with the third literal of clause 47.•
hyper(59, b,47,a, c,38,a) -- hyperresolution; interpret the list as a clause ID followed by a
sequence of triples, <literal,clause-ID,literal> the inference is presented as a sequence of binary resolution
steps. In the example shown, start with clause 59; then resolve literal b with clause 47 on literal a; with
the result of the first step, resolve literal c with clause 38 on literal a. The special case "xx" means
resolution with x=x.

•

ur(39, a,48,a, b,88,a, c,87,a, d,86,a) -- unit-resulting resolution; the list is interpreted
as in hyperresolution.

•

para(47(a,1),28(a,1,2,2,1)) -- paramodulate from the clause 47 into clause 28 at the
positions shown.

•

copy(59) -- copy clause 59.•
back_rewite(59) -- copy clause 59.•
back_unit_del(59) -- copy clause 59.•
new_symbol(59) -- introduce a new constant (see parameter new_constants).•
factor(59,b,c) -- factor clause 59 by unifying the second and third literals.•
xx_res(59,b) -- resolve the second literal of clause 59 with x=x.•
propositional -- not used in standard proofs.•
instantiate -- not used in standard proofs.•

Prover9 Manual

48 Basic Structure of Output Files

ivy -- not used in standard proofs.•

Secondary Steps (each assumes a working clause, which is either the result of a primary step or a previous
secondary step).

rewrite([38(5,R),47(5),59(6,R)]) -- rewriting (demodulation) with equations 38, 47, then
59; the arguments (5), (5), and (6) identify the positions of the rewritten subterms (in an obscure way),
and the argument R indicates that the demodulator is used backward (right-to-left).

•

flip(c) -- the third literal is an equality that has been flipped by the term ordering. This does not
necessarily mean that the equality is orientable by the primary term ordering, e.g., KBO.

•

merge(d) -- the fourth literal has been removed because it was identical to a preceding literal.•
unit_del(b,38) -- the second literal has been removed because it was an instance of the negation
clause 38 (which is a unit clause).

•

xx(b) -- the second literal has been removed because it was an instance of x!=x.•

Standard Proofs

Prover9 proofs may be transformed by separate programs, e.g., by Prooftrans.

Options That Say What Goes To the Output File

set(echo_input). % default set
clear(echo_input).

Clearing this flag suppresses printing of clauses, formulas, weighting rules (and everything else
that ends with end_of_list) that would ordinarily appear in the INPUT section of the output
file.

set(quiet).
clear(quiet). % default clear

Setting this flag causes most messages to the standard error file (usually the user's screen) to be
suppressed. These messages include notifications about proofs and statistics reports, and
warnings about demodulation limits. Setting this flag also suppresses several messages to the
ordinary output file, and it clears the bell flag.

set(print_initial_clauses). % default set
clear(print_initial_clauses).

If this flag is set, clauses are printed in the PROCESS INITIAL CLAUSES and CLAUSES
FOR SEARCH sections of the output file.

set(print_given). % default set
clear(print_given).

Clearing this flag prevents given clauses from being printed to the output file.

Prover9 Manual

Clause Justifications 49

set(print_gen).
clear(print_gen). % default clear

Setting this flag causes all generated clauses to be printed to the the output file. This can be
output files to be really huge.

Setting this flag causes the flag print_kept also to be set, and clearing this flag causes the flag
print_kept also to be cleared.

set(print_kept).
clear(print_kept). % default clear

Setting this flag causes all kept clauses to be printed to the the output file.

set(print_labeled).
clear(print_labeled). % default clear

Setting this flag causes kept clauses containing label attributes to be printed, even when the flag
print_kept is clear. This flag is useful when using the hints strategy, because when a clause
matches a hint containing a label, the label is copied to the clause. That is, clauses matching
labeled hints will be printed.

set(print_clause_properties).
clear(print_clause_properties). % default clear

Setting this flag causes several properties of clauses to be printed as "props" attributes on the
clauses. The properties include which literals are maximal (counting from 1), which literals are
maximal among literals of the same sign, and which literals are selected for application of
inference rules.

set(print_proofs). % default set
clear(print_proofs).

Clearing this flag prevents proofs from being printed to the output file. The proof message still
goes to the standard error file (usually the user's screen), unless the flag quiet has been set.

set(default_output). % default set
clear(default_output).

Setting this flag restores most of the output flags and parameters to their default values. Clearing
this flag does nothing.

assign(report, n). % default n=-1, range [-1 .. INT_MAX]

If n > 0, statistics are sent to the output file approximately every n seconds. (On Unix-like
systems, one can also tell Prover9 to print statistics to the output file by sending the signal USR1
to a running Prover9 process, e.g., kill -USR1 4223.)

Prover9 Manual

50 Options That Say What Goes To the Output File

assign(stats, string). % default string=lots, range [none,some,lots,all]

This parameter determines how many statistics are sent to the output file.

set(clocks).
clear(clocks). % default clear

If this flag is set, various operations during the Prover9 job are timed (e.g., inference,
demodulation, and subsumption), and timing reports are sent to the output file.

Timing the operations can be expensive, especially in Solaris and Macintosh systems. On Linux
systems, set(clocks) typically adds 5% -- 10% to the run time.

set(bell). % default set
clear(bell).

If this flag is set, Prover9 beeps when important things happen, such as proofs and warnings.
Some users run searches that find hundreds of proofs, and they clear this flag to prevent all of the
beeping.

Next Section: Weighting

Prover9 Manual

Options That Say What Goes To the Output File 51

Prover9 Manual

52 Options That Say What Goes To the Output File

Prover9 Manual Version Aug-2007

Weighting
Prover9's weighting function maps clauses to integers, and it is used primarily for two purposes:

selecting the given clause, and•
discarding inferred clauses (with the parameter max_weight).•

Otter accepts two weighting functions, one for selecting the given clause, and the other for
discarding inferred clauses. Prover9 always uses the same weighting function for both purposes.

In Otter's weighting rules, a variable matches any variable and only variables. The role is similar
to the anonymous variables "_" in Prover9's weighting rules.

Prover9 does not (yet) have anything analogous to Otter's $DOTS weighting feature.

Default Weights

The default weight of a clause is its symbol count, excluding commas, parentheses, negation symbols, and
disjunction symbols. That is,

the default weight of a constant or variable is 1,•
the default weight of a term or atomic formula is one more than the sum of the weights of its arguments,•
the default weight of a literal is the weight of its atomic formula,•
the default weight of a clause is the sum of the weights of its literals.•

Weighting Rules

The weighting function can be modified by giving a list of rules in the input file. The list must start with
list(weights). and end with end_of_list. Here is an example.

list(weights).

 weight(a) = 3. % the weight of the constant a is 3
 weight(f(a,x)) = 5 * weight(x). % weight(f(a,term)) = 5 * weight(term)
 weight(f(a,_)) = -1. % _ matches any variable
 weight(x | y) = 2 + (weight(x) + weight(y)). % add 2 for each "or" symbol

end_of_list.

Here is a summary of the weighting language.

Each weighting rule is an equation. The left-hand side of the rule must be weight(pattern). A rule
applies to a term if its pattern matches the term in the ordinary sense of demodulation or term rewriting.

•

Prover9 Manual

Weighting 53

An exception is that the symbol "_" matches any variable and only a variable.
The right-hand side of a rule consists of an integer-arithmetic expression applied to weight(...)
terms. When applying a rule, the substitution of the pattern match is applied to the the weight(...)
terms, which are then weighed recursively, and then the integer expression is evaluated to compute the
weight of the term.

•

The accepted integer operations are
binary: {+, *, /, min, max}♦
unary: {-, depth}♦

•

The rules are parsed with the ordinary term-parsing code, so (unless the user as included an op command
to change the parsing rules), the arithmetic expressions must be fully parenthesized, e.g., a + (b +
c).

•

Weighting rules are applied to a clause as follows.

The clause is weighed top-down. That is, a term is weighed before its subterms are weighed.•
When weighing a term, the first rule that matches is applied.•
If no rule matches, the weight of the term is one more than the sum of the weights of its arguments.•

Modifying the Default Weight

assign(constant_weight, n). % default n=1, range [INT_MIN .. INT_MAX]

This parameter specifies the default weight of constants. It can be overridden with weighting
rules for individual constants.

assign(sk_constant_weight, n). % default n=1, range [INT_MIN .. INT_MAX]

This parameter specifies the default weight of Skolem constants. It takes precedence over
constant_weight.

assign(variable_weight, n). % default n=1, range [INT_MIN .. INT_MAX]

This parameter specifies the default weight of variables.

assign(not_weight, n). % default n=0, range [INT_MIN .. INT_MAX]

The negation symbols on literals do not ordinarily contribute any weight to clauses. This
parameter says that each negation symbol has weight n.

assign(or_weight, n). % default n=0, range [INT_MIN .. INT_MAX]

The disjunction symbols between literals do not ordinarily contribute any weight to clauses. This
parameter says that each disjunction symbol has weight n.

assign(prop_atom_weight, n). % default n=1, range [INT_MIN .. INT_MAX]

Prover9 Manual

54 Weighting Rules

This parameter specifies the default weight for propositional atoms, that is, predicate symbols of
arity 0. They ordinarily have weight 1.

assign(nest_penalty, n). % default n=0, range [0 .. INT_MAX]

This parameter is used to penalize terms containing nested function symbols. If no weighting rule
applies to a term t, then for each argument with the same function symbol as t, the value n is
added to the weight of t. If n=0, there is no penalty.

assign(skolem_penalty, n). % default n=1, range [0 .. INT_MAX]

This parameter is used to penalize terms containing non-constant Skolem function. If no
weighting rule applies to a term t, then for each argument that contains a non-constant Skolem
function, its weight is multiplied by n. If n=1, there is no penalty.

assign(depth_penalty, n). % default n=0, range [INT_MIN .. INT_MAX]

This parameter is used to penalize (or prefer) clauses with deeper terms. It is applied to the entire
clause after all of the literals and subterms have been weighed. The weight of the clause C is
increased by n * depth(C). Note that n may be negative, decreasing the weight of the clause.

assign(var_penalty, n). % default n=0, range [INT_MIN .. INT_MAX]

This parameter is used to penalize (or prefer) clauses with more variables. It is applied to the
entire clause after all of the literals and subterms have been weighed. If v is the number of
(distinct) variable in the clause, the weight of the clause is increased by n * v. Note that n may be
negative, decreasing the weight of the clause.

Adjustments to Clause Weight

The final weight of a clause is calculated in three steps. First, the weighting rules are applied. Second, if the
weight is between default_weight and max_weight, the weight is reset to default_weight.

assign(default_weight, n). % default n=INT_MAX, range [INT_MIN .. INT_MAX]

That is, all clauses with weight between default_weight and max_weight are treated
equally.

Third, if the clause matches a hint, the weight may be adjusted by the flag degrade_hints and by the hint
attribute bsub_hint_wt.

Debugging Weighting Rules and Options

Here is an example of using Prover9 to test weighting rules and parameters.

prover9 -f weight_test.in | grep 'given #' > weight_test.out

Prover9 Manual

Modifying the Default Weight 55

Next Section: Attributes

Prover9 Manual

56 Debugging Weighting Rules and Options

Prover9 Manual Version Aug-2007

Attributes
Several kinds of attribute can be attached to input formulas with the # operator, for example,

x * y = y * x # label(commutativity).
x * c != e # answer(x) # label("the denial").
-p(c) | -q(c) # answer("here it is").
a * b != b * a # action(in_proof -> exit) # answer(commutativity).
x * (y * z) = y * (x * z) # bsub_hint_wt(500).

Each attribute has a data type of string, integer, or term. A string attribute is really just a term attribute that is a
constant. If a string attribute is not a legal constant, it can be enclosed in double quotes to make it so.

Attributes can be attached only to the top level of a formula; they cannot be attached to proper subformulas. (This
restriction might be lifted in future versions of Prover9.)

The accepted attributes are shown in the following table.

Name Type Inheritable Purpose

label string No Comment

answer term Yes Record substitutions and what has been proved

action term No Triggers action when clause is used

bsub_hint_wt integer No Used for hints

Inheritable attributes are passed from parent to child during most inference rules.

Label Attributes

Label attributes are simply comments that can be attached to input clauses, including hint clauses.

Answer Attributes

Answer attributes on clauses are essentially answer literals. They are inherited during application of inference
rules, and if they contain variables, the variables are instantiated by the substitution used in the inference.

Answer attributes (like all other attributes) contain exactly one argument. If you wish to record substitutions for
more than one variable, you must use a term that contains all of the variables, for example, a list, as in the
following clause.

-p(c,x,y,z) # answer([x,y,z]).

Prover9 Manual

Attributes 57

Answer attributes need not contain variables. For example, when there are multiple goals, answer attributes can be
used on the goal formulas to identify the goals that are proved.

Answer attributes on non-clausal formulas cannot contain variables. (This restriction might be lifted in future
versions of Prover9.)

Action Attributes

Action attributes cause various things to happen when clauses are used in various ways. See the section on
Actions.

Bsub_hint_wt Attribute

This attribute can be attached to a hint clause, and it is used to override ordinary weight assigned to clauses that
match the hint. That is, if a hint matches a clause, and if the hint has a bsub_hint_wt attribute, the clause gets
the value of the attribute as its weight instead of the weight that would be assigned by the ordinary weighting
method.

Next Section: Actions

Prover9 Manual

58 Answer Attributes

Prover9 Manual Version Aug-2007

Actions
Prover9's actions allow the user to change the search strategy during the search. For example, after a certain
number of given clauses have been used, the max_weight can be changed.

Actions can be triggered in two ways:

by some counter, for example, after 100 clauses have been retained, and•
when a clause containing an action attribute is used, for example, when it is used in a proof.•

Accepted Actions

The currently accepted actions are exit (which terminates the search) and a subset of the ordinary flags and
parameters.

Changable flags: reuse_denials, print_gen, print_kept, print_given,
breadth_first. lightest_first. breadth_first_hints.

•

Changable parameters: demod_step_limit, demod_size_limit, new_constants,
para_lit_limit, stats, max_given, max_weight, max_depth, max_vars, max_proofs,
max_literals, constant_weight, variable_weight, not_weight, or_weight,
prop_atom_weight, skolem_penalty, nest_penalty, depth_penalty,
default_weight, pick_given_ratio, age_part, weight_part, hints_part,
false_part, true_part.

•

Actions Triggered by Counters

Counter actions are given as a list of rules trigger -> action in the input file. Here are the currently recognized
triggers for counter actions.

given: the number of given clauses that have been processed.•
generated: the number of clauses that have been inferred.•
kept: the number of clauses that have been inferred and retained.•
level: the search level (this applies to breadth-first searches).•

The list must start with list(actions). and end with end_of_list.

Here is an example list of counter actions.

list(actions).

 given=10 -> set(print_kept).
 kept=1000 -> assign(max_weight, 30).

Prover9 Manual

Actions 59

 generated=5000 -> assign(pick_given_ratio, 4).
 level=3 -> exit.

end_of_list.

Actions Triggered by Clauses

Clause actions occur as attributes on clauses, for example,

A * B != B * A # action(in_proof -> assign(max_weight, 30)).

In this example (which only makes sense if max_proofs > 1), if the clause occurs in a proof, the action is
applied.

The only trigger currently recognized for clause actions is in_proof. Others will likely be added.

Next Section: Goals and Denials

Prover9 Manual

60 Actions Triggered by Counters

Prover9 Manual Version Aug-2007

Goals and Denials
This section shows how the conclusion(s) of a conjecture can be stated in positive form, how one can search for
direct proofs as opposed to bidirectional proofs, and how multiple conclusions are stated and handled.

Terminology

Conclusion: this term is used informally.•
Goal: this term refers to a conclusion stated in positive form.•
Denial clause: this term refers to a negative clause in a Horn set, because such clauses usually correspond
to the negation of a conclusion.

•

Goals: Stating Conclusions in Positive Form

In Otter, the conclusions are always stated in negated form.

Prover9 allows the user to state conclusions in positive form by using the list formulas(goals). However,
Prover9 always works by refutation, so the clauses or formulas in the goals lists are negated as described below,
and the results are appended to the sos clause list before the search starts. In other words, goals are "syntactic
sugar" for input, and have nothing to do with the way Prover9 conducts its search for refutations.

When the conclusion is given in positive form, the user has no control over the Skolem symbols (if any) that
Prover9 introduces. If the user needs some control of the Skolem symbols, for example, to insert them into the
symbol precedence at a particular spot, or to include them in the weighting function, the user should do the
Skolemizing and give the conclusion in negated form.

If there is just one formula in formulas(goals), the meaning is clear: the formula is processed by first taking
its universal closure, then negating. The formula is then handled exactly as if it had been input in
formulas(sos), that is, by Skolemizing and transforming to clauses.

Multiple Goals

If there is more than one formula in formulas(goals), the meaning is not clear. Is the conclusion the
disjunction of those formulas? Or the conjunction? The answer: disjunction: if any goal is proved, the proof is
reported, printed, and counted.

Multiple complex goals are not allowed, because the quantification of free variables can be very confusing.
Therefore Prover9 enforces the following rule.

If there is more than one formula in the goals list, each must be a positive universal conjunctive
formula, that is a formula constructed from atomic formulas, universal quantification, and
conjunction only.

Prover9 Manual

Goals and Denials 61

To avoid this restriction, one can always write the conclusion clearly as a single goal formula containing any of
the logic connectives and quantification. However, if the conjecture involves multiple complex conclusions, we
recommend, for search efficiency, separate Prover9 searches.

If there are multiple goals, each is processed separately by applying universal closure, negation, and
transformation to clauses. After this processing, Prover9 forgets that there were multiple goals and simply
searches for refutations.

When there are multiple goals, and when the user wishes to prove more than one goal, the parameter
max_proofs should be set to an appropriate value. (The flag auto_denials (default set) can do so
automatically.)

Multiple Proofs

assign(max_proofs, n). % default n=1, range [-1 .. INT_MAX]

This parameter tells Prover9 to stop searching when the n-th proof has been found.

Denials: Negative Clauses in Horn Sets

Denial clauses (negative clauses in Horn sets) can be derived from goals, or they can be input directly as negative
clauses.

Forward or Direct Proofs

The following flag restricts the use of negative clauses in Horn sets, with the aim of finding proofs that are more
direct, that is, proofs that go forward from the hypotheses to the conclusion rather than proofs that reason
backward from the conclusion.

set(restrict_denials).
clear(restrict_denials). % default clear

This flag applies only to Horn sets. If the flag is set, negative clauses (clauses in which all literals
are negative) in Horn sets are referred to as restricted denials and are given special treatment.

The inference rules (i.e., paramodulation and the resolution rules) will not be applied to restricted
denials. However, restricted denials will be simplified by back demodulation and back unit
deletion.

In addition, restricted denials will not be deleted if they are over the weight limit
(max_weight).

The effect of setting restrict_denials is that proofs of Horn sets will usually be more
forward or direct. This option can speed up proofs, it can delay proofs, and it can block all proofs.

Multiple Proofs of the Same Conclusion

set(reuse_denials).

Prover9 Manual

62 Multiple Goals

clear(reuse_denials). % default clear

If this flag is set, when a denial clause (a negative clause in a Horn set) is used in a proof, and
when max_proofs says to search for more proofs, subsequent proofs may be of the same
conclusion. (Multiple proofs of the same conclusion may be useful when one is searching for
short proofs.)

If this flag is clear, then when a proof is found, the denial and all of its descendants are disabled
so that they will not appear in subsequent proofs.

This flag is independent of the flag restrict_denials.

Auto_denials

set(auto_denials). % default set
clear(auto_denials).

If this flag is set (the default), negative clauses in Horn sets receive some special initial
processing.

If a Horn set has more than one denial (negative) clause, we assume they correspond to separate
conclusions, and the user wishes to have a separate proof of each conclusion. Therefore, if
max_proofs has not been changed from its default value of 1, we assign to max_proofs the
number of negative clauses. (Note that when reuse_denials is clear (the default), Prover9
prevents multiple proofs of the same conclusion.)

Also, if a negative clause in a Horn set has label attribute but no answer attribute, the clause is
given an answer attribute corresponding to the first label attribute. This saves the user from
changing "label" to "answer" when moving formulas from the sos list to the goals list.

An Example

The following example illustrates multiple goals (including a goal that is a combination of other goals),
auto_denials, and restrict_denials.

prover9 -f olsax.in > olsax.out

Next Section: Hints

Prover9 Manual

Multiple Proofs of the Same Conclusion 63

Prover9 Manual

64 An Example

Prover9 Manual Version Aug-2007

Hints
Hint clauses can be used to help guide Prover9's search. Prover9's input can contain any number of hint lists
(which are simply concatenated by Prover9).

Each list of hint clauses must start with formulas(hints). and end with end_of_list. Any clause is
acceptable as a hint. For example (the label attributes are optional),

formulas(hints).
 x ' * (x * y) = y # label(6).
 x * (x * y) = y # label(7).
 x * (y * (x * y)) = e # label(8).
 x ' ' * e = x # label(9).
 x ' * e = x # label(10).
 x ' = x # label(11).
 x * e = x # label(12).
 x * (y * x) = y # label(13).
 x * y = y * x # label(14).
end_of_list.

A derived clause matches a hint if it subsumes the hint. If a clause matches more than one hint, the first matching
hint is used.

In Otter, "matching a hint" can mean (depending on the parameter settings) subsumes, subsumed
by, or equivalent to. These other types of matching may be added to Prover9 if there is any
demand for them.

Hints are used primarily when selecting given clauses. The mechanism for doing this is the given-clause selection
procedure. In short, the default value of the hints_part parameter says to select clauses that match hints
(lightest first) whenever any are available.

Hints are also used when deciding to keep a new clause. Clauses that match hints are not deleted by any of the
parameters max_weight, max_vars, max_literals, or max_depth.

Where do Hints Come From?

Hints frequently consist of proofs, perhaps many, of related theorems.

Bob Veroff developed the concept, installing code for hints in an early version of Otter, to experiment with his
method of proof sketches [Veroff-hints, Veroff-sketches]. In the proof sketches method, a difficult conjecture is
attacked by first proving several (or many) weakened variants of the conjecture, and using those proofs as hints to
guide searches for a proof of the original conjecture.

Prover9 Manual

Hints 65

The program Prooftrans, which is distributed along with Prover9, can be used to extract proofs from a Prover9
output file and transform the proofs to lists of hints suitable for input to subsequent Prover9 jobs.

An Example

This example consists of four jobs. The first is a proof of a nontrivial theorem called "hard". The other three jobs
prove the hard theorem indirectly by first proving an easier theorem (in this case, the easier theorem simply the
harder theorem with an extra assumption); then using the proof of the easier theorem as hints to help prove the
hard theorem.

A Prover9 job that proves the hard theorem.

prover9 -f hard.in > hard.out

1.

A proof of the easier thorem.

prover9 -f easy.in > easy.out

2.

A Prooftrans job converts the proof of the easier theorem into a list of hints.

prooftrans hints -f easy.out > easy.hints

3.

A Prover9 job that uses the hints to prove the harder theorem.

prover9 -f hard.in easy.hints > hard-hints.out

4.

Proving the hard theorem indirectly (jobs 2,3,4) takes about 1/4 the time as proving it directly (job 1). Of course
the difficult and interesting part of working this way is finding good "easy" theorems.

Special Weight Assignments

When the given clause selection procedure calls for a clause that matches a hint, the lightest such clause is chosen.
Ordinarily, clauses that match hints are weighed just as any other clause is weighed. However, if one believes
some hints are more important that others, one can, in effect, say "any clause that matches this hint gets a specific
weight". This is accomplished by attaching a bsub_hint_wt attribute to the hint, as in the following example.

formulas(hints).
 x ' * (x * y) = y # label("very important hint") # bsub_hint_wt(-100).
end_of_list.

Another way to assign a special weight is with the following flag.

set(breadth_first_hints).
clear(breadth_first_hints). % default clear

Setting this flag causes all clauses that match hints to receive weight 0. The effect is as if each
hint had the attribute bsub_hint_wt(0). This causes clauses that match hints to be selected in
the order they are generated.

The weight assigned by any of the preceding methods may be modified if the flag degrade_hints is set.

Prover9 Manual

66 Where do Hints Come From?

Hint Degradation

In many searches that use hints, a given hint can match many different derived clauses. As a hint matches more
and more clauses, we wish its influence to diminish. This is the idea behind Veroff's hint degradation method.

set(degrade_hints). % default set
clear(degrade_hints).

If this flag is set, a weight penalty is added to clauses that match hints that have been previously
matched. The following procedure is used. Given a newly derived clause, say C, assume we find
a hint that matches the clause; let n be the number of times the hint has already been matched;
then the weight of C is increased by (n * 1000). In other words, 1000 is added for each previous
match of the hint.

The effect of this procedure is (usually) that clauses matching hints are selected in the following
order: clauses matching hints that have not been matched before, clauses matching hints that have
been matched once before, and so on.

Keeping/Limiting Clauses the Match Hints

Ordinarily, when a clause matching a hint is derived, the clause will be retained even if it violates limits such as
max_weight. Setting the following flag will cause those limits to be applied to such clauses, and it may be
useful with trying to simplify known proofs.

set(limit_hint_matchers).
clear(limit_hint_matchers). % default clear

If this flag is set, the parameters max_weight, max_literals, max_depth, and
max_vars will be applied to clauses that match hints (as well as to clauses that don't match
hints).

Otherwise (the default), those limits will not be applied to clauses that match hints.

Back Demodulation of Hints

When hints come from proofs in which equality and rewriting play a major role, they may have trouble guiding a
search, because the rewriting may occur in different ways in the new search. In particular, a hint may fail to match
a clause, because the clause has been rewritten and the hint has not. This is the motivation for the following
feature.

set(back_demod_hints). % default set
clear(back_demod_hints).

If this flag is set, hints are back demodulated. That is, they are kept simplified with respect to the
current set of demodulators.

Labels on Hints

Label attributes on hint clauses get special treatment. When a hint containing a label matches a clause, the label
attribute is copied to the clause.

Prover9 Manual

Hint Degradation 67

The following flag addresses the situation in which the input contains sets of equivalent hints. (This situation
frequently occurs when the hints contain many proofs of similar theorems.)

set(collect_hint_labels).
clear(collect_hint_labels). % default clear

If this flag is set, and the hints list contains a set of equivalent hints, only the first copy of the hint
is retained. However, the labels from all of the other equivalent hints are collected and put on the
retained copy. When a clause matches the retained hint, it gets copies of all of the labels from the
equivalent hints.

If this flag is clear, when a clause matches a set of equivalent hints, it receives the label (if any)
from the first copy only.

Next Section: Semantics

Prover9 Manual

68 Labels on Hints

Prover9 Manual Version Aug-2007

Semantic Guidance
Prover9 has a method of using finite interpretations to guide the search for a proof; in particular, to help select the
given clause.

To use semantic guidance the user gives one or more interpretations along with the ordinary Prover9 input. All
clauses (input and derived) that are eligible to be selected as given clauses are evaluated in the interpretations. If a
clause is false in all of the interpretations, it is marked as "false" and given the attribute label(false); if it is
true in any of the interpretations, it is marked as "true". (There is an exception: see the parameter eval_limit
below.)

If a clause being evaluated contains a symbol that is not in an interpretation, a warning message is given, and the
clause receives the value "true".

When selecting the given clause, Prover9 may use the parameters true_part,and false_part, as described
on the page Selecting the Given Clause. With semantic guidance (explicit interpretations), the "true_part" and
"false_part" refer simply to clauses marked as "true" and "false" with respect to the interpretations.

Format of Interpretations for Semantic Guidance

The interpretations are finite and must be in the format produced by Mace4. They must appear in a list that starts
with list(interpretations). and ends with and_of_list. The following example is a lattice in
terms of the meet and join operations.

list(interpretations).
interpretation(6, [], [
 function(^(_,_), [
 0,0,0,0,0,0,
 0,1,2,3,4,5,
 0,2,2,0,0,0,
 0,3,0,3,5,5,
 0,4,0,5,4,5,
 0,5,0,5,5,5]),
 function(v(_,_), [
 0,1,2,3,4,5,
 1,1,1,1,1,1,
 2,1,2,1,1,1,
 3,1,1,3,1,3,
 4,1,1,1,4,4,
 5,1,1,3,4,5])]).
end_of_list.

Prover9 Manual

Semantic Guidance 69

An Example of Semantic Guidance

Here a job that uses the preceding interpretation for semantic guidance.

prover9 -f LT-82-2.in > LT-82-2.out

Notes about the preceding job.

The interpretation is the only additional input needed to give semantic guidance. The default values of the
parameters age_part, true_part, false_part, and eval_limit, work well for this job (and
many others).

•

The interpretation does not contain Skolem constants that appear in the denial, and warning messages are
given when Prover9 attempts to evaluate clauses containing those Skolem constants. (They receive the
value "true".)

•

One of the input clauses is assigned the attribute label(false), because it is false in the
interpretation.

•

The "false" given clauses (#12, #13, #17, #18, #22, #23, ...) are mostly heavier than the "true" given
clauses, showing that they would likely not enter the search at such an early stage without semantic
guidance.

•

At given clause #138, there are no more false clauses to select; and then several more are inferred and
given near the end of the search, leading to a proof.

•

This job takes about 11 seconds. A similar job without semantic guidance takes about 25 minutes to find a
proof.

•

Advice on Selecting Interpretations

If the conjecture formulates naturally as

theory, hypotheses -> conclusion,

a good first step is to try the smallest model of the theory in which the conclusion is false. The preceding example
has that form, and the interpretation used in the that example can be easily found with the following Mace4 job.

mace4 -N10 -f LT-82-2-interp.in > LT-82-2-interp.out

If the conjecture formulates naturally as

theory -> conclusion,

with no obvious hypothesis, one can try to slightly weaken the theory in some way that relates to the conclusion,
and use a model of the weakened theory in which the conclusion is false.

Options for Semantic Guidance

Aside from the parameters true_part,and false_part, which may be used regardless of whether semantic
guidance is in effect, there is just one option, eval_limit, to control semantic guidance.

If an interpretation is large, or if a clause being evaluated has many variables, evaluation can take too long,
because it must consider each instance of the clause over the domain of the interpretation. That is if an

Prover9 Manual

70 An Example of Semantic Guidance

interpretation has size d, and a clause has v variables, evaluation has to consider dv instances of the clause to
determine that it is true. The following parameter causes large evaluations to be skipped.

assign(eval_limit, n). % default n=1024, range [-1 .. INT_MAX]

This parameter applies when explicit interpretations are being used to select the given clause.
When a clause is being evaluated in an interpretation, if the number of ground instances that
would be considered is greater than n, the evaluation is skipped and the clause is assigned the
value true.

The default value of 1024 allows

clauses with up to 3 variables to be evaluated in interpretations up to size 10,♦
clauses with up to 4 variables to be evaluated in interpretations up to size 5,♦
clauses with up to 5 variables to be evaluated in interpretations up to size 4,♦
clauses with up to 6 variables to be evaluated in interpretations up to size 3, and♦
clauses with up to 10 variables to be evaluated in interpretations of size 2.♦

Next Section: Mace4

Prover9 Manual

Options for Semantic Guidance 71

Prover9 Manual

72 Options for Semantic Guidance

Prover9 Manual Version Aug-2007

Mace4 (Models And CounterExamples)
The program Mace4 [McCune-Mace4] searches for finite structures satisfying first-order and equational
statements, the same kind of statement that Prover9 accepts. If the statement is the denial of some conjecture, any
structures found by Mace4 are counterexamples to the conjecture.

Mace4 can be a valuable complement to Prover9, looking for counterexamples before (or at the same time as)
using Prover9 to search for a proof. It can also be used to help debug input clauses and formulas for Prover9.

For the most part, Mace4 accepts the same input files as Prover9. If the input file contains commands that Mace4
does not understand, then the argument "-c" must be given to tell Mace4 to ignore those commands.

For example, say we're learning group theory, and we're wondering whether all groups are commutative. We can
run the following two jobs in parallel, with Prover9 looking for a proof, and Mace4 looking for a counterexample.

prover9 -f x2.in > x2.prover9.out
mace4 -c -f x2.in > x2.mace4.out

Most of the options accepted by Mace4 can be given either on the command line or in the input file. The
following command lists the command-line options accepted by Mace4.

mace4 -help

Terminology. We use the terms interpretation, model, and structure for the objects that Mace4 produces. From a
logic point of view, Mace4 produces interpretations which are models of the input formulas. From a math point of
view, Mace4 produces structures satisfying the input formulas.

What Mace4 Does

Mace4 searches for unsorted finite structures only. That is, a structure (model) has one underlying finite set,
called the domain (the members are always 0,1,...,n-1 for a set of size n), and structures are functions and relations
(tables) over the domain, corresponding to the operations and relation symbols in the specification.

By default, Mace4 starts searching for a structure of domain size 2, and then it increments the size until it
succeeds or reaches some limit.

The Original Mace4 Manual

The original Mace4 manual [McCune-Mace4] (PDF) is out of date with respect to features and options, but it
contains useful information on the history of Mace4, details on the search methods, and the differences between
Mace2 and Mace4.

Prover9 Manual

Mace4 (Models And CounterExamples) 73

http://www.cs.unm.edu/~mccune/mace4/
http://www.cs.unm.edu/~mccune/prover9/mace4.pdf

Next Section: Mace4 Input

Prover9 Manual

74 The Original Mace4 Manual

Prover9 Manual Version Aug-2007

Mace4 Input
Mace4 has been designed so that it accepts most Prover9 input files. This allows users to prepare one input file
which can be used by Prover9 (to search for proofs) and by Mace4 (to search for counterexamples).

Mace4 Options

Mace4 and Prover9 accept different sets of flags and parameters. In order to use the same input files for both
programs, we let Mace4 take its options from the command line instead of from the input file. If Mace4 is given a
Prover9 input file, along with the command-line option -c, it will ignore any unrecognized (e.g., Prover9) options
in the input file. The Mace4 options are described on the next page.

Formulas (including Clauses)

Mace4 accepts the same formulas and clauses as Prover9. See the page Prover9 Clauses and Formulas.

A Caveat: Domain Elements

In one important case, formulas have different meanings in Prover9 and Mace4:

If a formula contains constants that are natural-numbers, {0,1,...}, Mace4 assumes they are members of the
domain of some structure, that is, they are distinct objects; in effect, Mace4 operates under the assumptions 0 ≠ 1,
0 ≠ 2,

To Prover9, natural numbers are just ordinary constants. For example, to Prover9 the statement 0=1 is satisfiable,
and to Mace4 it is unsatisfiable.

Because Mace4 assumes that natural-number constants are members of the domain, if a formula contains a natural
number that is out of range (≥ n, when searching for a structure of size n), Mace4 will terminate with a fatal error.

Lists of Formulas (including Clauses)

Prover9 accepts a fixed set of lists of formulas (e.g., assumptions, usable, goals, hints).

Mace4 accepts any lists of formulas. All are treated as ordinary formulas except the following two lists.

formulas(hints). These are intended to help Prover9 find proofs and are ignored by Mace4.•
formulas(goals). These are negated by Mace4, just as they are by Prover9.•

Prover9 Manual

Mace4 Input 75

formulas(goals)

Prover9 has several restrictions on the goals it accepts (see Prover9 Goals and Denials), and Mace4 has the same
restrictions. Mace4 negates goals and translates them to clauses in the same way as Prover9. (The term "goal" is
not particularly intuitive for Mace4 users, because Mace4 does not prove things. It makes more sense, however,
when one thinks of Mace4 as searching for a counterexample to the goal.)

When there are multiple goals, Mace handles them the same as Prover9. For example, consider the following
goals.

formulas(goals).
 x * y = y * x # label(commutativity).
 (x * y) * z = x * (y * z) # label(associativity).
end_of_list.

Logically, this is a disjunction: Prover9 gives a proof if either goal is proved, and Mace4 gives a counterexample
if both are falsified. In particular, this pair of goals is equivalent (for both Prover9 and Mace4) to the following
pair of assumptions.

formulas(assumptions).
 exists x exists y (x * y != y * x).
 exists x exists y exists z (x * y) * z != x * (y * z).
end_of_list.

Next Section: Mace4 Options

Prover9 Manual

76 formulas(goals)

Prover9 Manual Version Aug-2007

Mace4 Options
Mace4 accepts set, clear, and assign commands in the input file. Several of these are in common with
Prover9 (e.g., assign(max_seconds, 30)), but most are specifically for Mace4.

If Mace4 is called with the command-line option -c (compatability mode), it will ignore any set, clear, and
assign that it does not recognize, assuming they are meant for some other program (Prover9).

Each Mace4 option can be specified on the command line instead of in the input file. In practice, Mace4 options
are usually specified on the command line, so that the input files can be used also for Prover9.

When Mace4 options are specified on the command line, single-character codes are used. For example, the
command-line option -t 30 means the same as assign(max_second, 30) in the input file. If an option is
given in both places, the one on the command line takes precedence. Command-line options for Boolean-valued
options (flags) always take an argument: 1 means "set", and 0 means "clear". For example, -V 1 means
set(prolog_style_vaiables, and -V 0 means clear(prolog_style_variables).

The command "mace4 -help" shows the correspondence between the command-line codes and the option
names, and it shows the default values.

Option Listing

Basic Options

assign(domain_size, n). % default n=2, range [2 .. 200] % command-line -n n

assign(iterate_up_to, n). % default n=10, range [-1 .. 200] % command-line -N n

assign(increment, n). % default n=1, range [1 .. INT_MAX] % command-line -i n

These three parameter work together to determine the domain sizes to be searched. The search starts for structures
of size domain_size; if that search fails, the size is incremented, and another search starts. This continues up
through the value iterate_up_to (or until some other limit terminates the process).

For example, the command-line options "-n 5 -N 11 -i 2" say to try domain sizes 5,7,9,11.

set(iterate_primes). % command-line -q 1
clear(iterate_primes). % default clear % command-line -q 0

This flag overrides the parameter iterate. It says to try the sizes that are prime numbers, from domain_size
up through iterate_up_to.

For example, the command-line options "-n 10 -N 30 -q 1" say to try domain sizes 11, 13, 17, 19, 23, 29.

Prover9 Manual

Mace4 Options 77

assign(max_models, n). % default n=1, range [-1 .. INT_MAX] % command-line -m n

The parameter max_models says to stop searching when the n-th structure has been found.

assign(max_seconds, n). % default n=INT_MAX, range [0 .. INT_MAX] % command-line -t n

The parameter max_seconds says to stop searching after n seconds.

assign(max_seconds_per, n). % default n=INT_MAX, range [0 .. INT_MAX] % command-line -s n

The parameter allows at most n seconds for each domain size. The parameter max_seconds can be used
(together with max_seconds_per) to given an overall time limit.

assign(max_megs, n). % default n=200, range [0 .. INT_MAX] % command-line -b n

The parameter max_megs says to stop searching when (about) n megabytes of memory have been used.

set(prolog_style_variables). % command-line -V 1
clear(prolog_style_variables). % default clear % command-line -V 0

A rule is needed for distinguishing variables from constants in clauses and formulas with free variables. If this
flag is clear, variables start with (lower case) 'u' through 'z'. If this flag is set, variables in clauses start with (upper
case) 'A' through 'Z' or '_'.

set(print_models_standard). % default set % command-line -P 1
clear(print_models_standard). % command-line -P 0

If this flag is set, all structures that are found are printed in "standard" form, which means they are suitable as
input to other LADR programs such as isofilter and interpformat.

set(print_models). % command-line -p 1
clear(print_models). % default clear % command-line -p 0

If this flag is set, and if print_models_standard is clear, all structures that are found are printed in a
tabular form.

set(integer_ring). % command-line -R 1
clear(integer_ring). % default clear % command-line -R 0

If this flag is set, a ring structure is is applied to the search. The operations {+,-,*} are assumed to be the ring of
integers (mod domain_size). This method puts a tight constraint on the search, allowing much larger structures to
be investigated. Here is an example.

mace4 -f ring41.in > ring41.out

For further information on the integer_ring flag, see slides from a workshop presentation.

set(verbose). % command-line -v 1
clear(verbose). % default clear % command-line -v 0

If the verbose flag is set, the output file receives information about the search, including the initial partial
model (the part of the model that can be determined before backtracking starts) and timing and other statistics for
each domain size. (It does not give a trace of the backtracking, so it does not consume a lot of file space.)

Prover9 Manual

78 Basic Options

http://www.cs.unm.edu/~mccune/slides/award-2004.pdf

set(trace). % command-line -T 1
clear(trace). % default clear % command-line -T 0

If the trace flag is set, detailed information about the search, including a trace of all assignments and
backtracking, is printed to the standard output. This flag causes a lot of output, so it should be used only on small
searches.

Advanced Options

These options are used for experimentation with search methods. They can be ignored by nearly all users. For
descriptions of most of these options, see the original Mace4 manual [McCune-Mace4] (PDF).

set(lnh). % default set % command-line -L 1
clear(lnh). % command-line -L 0

assign(selection_order, n). % default n=2, range [0 .. 2] % command-line -O n

assign(selection_measure, n). % default n=4, range [0 .. 4] % command-line -M n

set(negprop). % default set % command-line -G 1
clear(negprop). % command-line -G 0

set(neg_assign). % default set % command-line -H 1
clear(neg_assign). % command-line -H 0

set(neg_assign_near). % default set % command-line -I 1
clear(neg_assign_near). % command-line -I 0

set(neg_elim). % default set % command-line -J 1
clear(neg_elim). % command-line -J 0

set(neg_elim_near). % default set % command-line -K 1
clear(neg_elim_near). % command-line -K 0

set(skolems_last). % command-line -S 1
clear(skolems_last). % default clear % command-line -S 0

Next Section: Interpformat

Prover9 Manual

Advanced Options 79

http://www.cs.unm.edu/~mccune/prover9/mace4.pdf

Prover9 Manual

80 Advanced Options

Prover9 Manual Version Aug-2007

Interpformat
The models (structures) in Mace4 output files can be transformed in various ways with the program Interpformat.

The transformations are listed here.

standard: This transformation simply extracts the structure from the file and reprints it in the same
(standard) format, with one line for each operation. The result should be acceptable to any of the LADR
programs that take standard structures.

•

standard2: This is similar to standard, except that the binary operations are split across multiple
lines to make them more human-readable. The result should be acceptable to any of the LADR programs
that take standard structures.

•

portable: This form is list of ... of lists of strings and natural numbers. It can be parsed by seveal
scripting systems such as GAP, Python, and Javascript. See the section Portable Format.

•

tabular: This form is designed to be easily readable by humans. It is not meant for input to other
programs.

•

raw: This form is a sequence of natural numbers.•
cooked: This form is a sequence of ground terms.•
xml: This is an XML form. Here is a DTD for LADR interpretations, and here is an XML stylesheet for
transforming the XML to HTML.

•

tex: This generates LaTeX source for the interpretation.•

Examples

The following Mace4 job creates an output file containing one model in "standard" (the default) format.

mace4 -c -f x2.in > x2.mace4.out

The following Interpformat jobs take the Mace4 output file, extract the model, and transform it as described
above.

interpformat standard -f x2.mace4.out > x2.standard
interpformat standard2 -f x2.mace4.out > x2.standard2
interpformat portable -f x2.mace4.out > x2.portable
interpformat tabular -f x2.mace4.out > x2.tabular
interpformat raw -f x2.mace4.out > x2.raw
interpformat cooked -f x2.mace4.out > x2.cooked
interpformat xml -f x2.mace4.out > x2.xml
interpformat tex -f x2.mace4.out > x2.tex

Portable Format

Prover9 Manual

Interpformat 81

The portable format for interpretations can be parsed by several scriping languages including Python and GAP.
Here is a counterexample on ternary relations in lattice theory. The result contains one interpretation of size 4
containing two binary functions (meet and join), one binary relation (less-or-equal), two ternary relations, and
three constants.

mace4 -c -f LT-port.in | interpformat portable > LT-port.out

The result is a list of interpretations:

each interpretation is a triple: [size-of-interpretation (say n), comments, list-of-operations];•
each operation is a 4-tuple: ["function" | "relation", name-of-operation, arity, values];•
values of operations (domain elememts are [0 ... n-1]):

constant (nullary function): domain element;♦
unary function: list of domain elements;♦
binary funcion: 2-dimensional list (list of lists) of domain elements;♦
ternary funcion: 3-dimensional list of domain elements;♦
etc.♦
relations are similar but with values of 0 (FALSE) or 1 (TRUE).♦

•

Here is a simple Python script that reads a list of portable interpretations and prints them in a different form.

port.py < LT-port.out > LT-port.out2

Here is a simple GAP session that reads and prints a list of portable interpretations.

% gap -b
GAP4, Version: 4.4.7 of 17-Mar-2006, i486-pc-linux-gnu-i486-linux-gnu-gcc
gap> interpretations := EvalString(StringFile("LT-port.out"));;
gap> interpretations;
[[4, ["=(number,1)", "=(seconds,0)"],
 [["relation", "<=", 2, [[1, 1, 1, 1], [0, 1, 0, 0],
 [0, 1, 1, 0], [0, 1, 0, 1]]],
 ["function", "^", 2, [[0, 0, 0, 0], [0, 1, 2, 3],
 [0, 2, 2, 0], [0, 3, 0, 3]]],
 ["function", "v", 2, [[0, 1, 2, 3], [1, 1, 1, 1],
 [2, 1, 2, 1], [3, 1, 1, 3]]],
 ["function", "c1", 0, 2], ["function", "c2", 0, 0],
 ["function", "c3", 0, 3],
 ["relation", "A", 3, [[[1, 1, 1, 1], [0, 1, 0, 0],
 [0, 1, 1, 0], [0, 1, 0, 1]],
 [[1, 0, 0, 0], [1, 1, 1, 1], [1, 0, 1, 0],
 [1, 0, 0, 1]],
 [[1, 0, 0, 0], [0, 1, 0, 0], [1, 1, 1, 0],
 [0, 0, 0, 0]],
 [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0],
 [1, 1, 0, 1]]]],
 ["relation", "B", 3, [[[1, 1, 1, 1], [0, 1, 0, 0],
 [0, 1, 1, 0], [0, 1, 0, 1]],
 [[1, 0, 0, 0], [1, 1, 1, 1], [1, 0, 1, 0],
 [1, 0, 0, 1]],
 [[1, 0, 0, 1], [0, 1, 0, 1], [1, 1, 1, 1],
 [0, 0, 0, 1]],
 [[1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0],
 [1, 1, 1, 1]]]]]]]
gap>

Prover9 Manual

82 Portable Format

http://www.python.org
http://www.gap-system.org

Next Section: Isofilter

Prover9 Manual

Portable Format 83

Prover9 Manual

84 Portable Format

Prover9 Manual Version Aug-2007

Isofilter
If Mace4 produces more than one structure, some of them are very likely to be isomorphic to others. The program
Isofilter can be used to remove isomorphic structures.

Determining whether two structures are isomorphic is a hard problem in general, but isofilter can cope with some
large structures in reasonable time. It depends on the type of the strucure. For example, quasigroups usually take
more time than lattices.

Isofilter accepts structures in LADR standard format, which is the default format produced by Mace4. However,
the Mace4 output contains a lot of extraneous information, which can be stripped out with the command
interpformat standard. Isofilter also accepts the following command-line arguments, which are
described in the examples below.

ignore_constants: ignore all constants during the isomorphism tests.•
check '<operations>' : consider only the listed operations in the isomorphism tests.•
wrap: enclose the resulting structures in list(interpretations). ... end_of_list.•

Examples

We start with a Mace4 job and extract the interpretations; then we run Isofilter.

mace4 -N6 -m -1 -f BA2.in | interpformat standard > BA2.interps
isofilter < BA2.interps > BA2.interps2

Note that the two models in BA2.interps2 differ only in one of the constants. In this case the constants come from
existentially quantified variables in the goal, and all we really care about is the lattice. We can tell Isofilter to
ignore differences in constants by giving it the argument ignore_constants as in the following command.

isofilter ignore_constants < BA2.interps > BA2.interps3

Another way to use only a subset of the operations is the check argument, which us used to specify exactly
which operations to test for isomorphism. In the following example, only the meet and join operations are
checked. (If there is more than one operation, or if the operation may be interpreted by the shell, they should be
enclosed in single quotes.)

mace4 -N6 -m -1 -f MOL.in | interpformat standard > MOL.interps
isofilter check '^ v' < MOL.interps > MOL.interps2

The output of isofilter is frequently used as input to a program that expects the interpretations to be in a list of
interpretations; we can tell isofilter to put the output in that form by giving it the argument wrap as in the
following command.

Prover9 Manual

Isofilter 85

isofilter ignore_constants wrap < BA2.interps > BA2.interps4

Finally, we can string together some of the preceding commands as follows.

mace4 -N6 -m -1 -f BA2.in | interpformat standard | isofilter ignore_constants wrap > BA2.interps5

Next Section: Prooftrans

Prover9 Manual

86 Examples

Prover9 Manual Version Aug-2007

Prooftrans
When Prover9 proves a theorem, it sends the proof to its output file in a standard form. The standard form
contains, for each step, justifications with enough detail to reconstruct or check the proof without any search.

Prover9 proofs may contain non-clausal assumptions and goals, as well as ordinary clauses. Non-clausal
assumptions are translated to clauses, and goals are negated and then translated to clauses. See the proof in
following example

prover9 -f subset_trans.in > subset_trans.out

Prooftrans can extract proofs from Prover9 output files and transform them in various ways, including the
following.

No transformation,•
renumber steps,•
simplify justifications,•
expand all steps, turning secondary justifications into explicit steps,•
produce proofs in XML,•
produce proofs for checking by the IVY proof checker, and•
produce hints for guiding subsequent searches.•

Prooftrans is part of the LADR/Prover9/Mace4 package. When the package is installed, the Prooftrans program
should be in the same directory as Prover9 and Mace4.

Using Prooftrans

The Prover9 output file containing the proof(s) is usually given to Prooftrans with the argument "-f
<filename>". If there is no "-f <filename>" argument, Prooftrans takes its input from the standard input.

The arguments that tell Prooftrans what to do with the proof(s) are described in the following sections, using the
output file subset_trans.out as a running example.

If there is more than one proof in the file, the transformations will be applied to each proof. The hints
transformation collects all of the clauses in the proof(s) into one list of hints. The other transformations produce
one proof for each proof in the input file.

Here is a synopsis of the Prooftrans command; the arguments in square brackets are optional.

prooftrans [parents_only] [expand] [renumber] [striplabels] [-f file]
prooftrans xml [expand] [renumber] [striplabels] [-f file]
prooftrans ivy [renumner] [-f file]
prooftrans hints [-label label] [expand] [striplabels] [-f file]

Prover9 Manual

Prooftrans 87

Note that more than one transformation can be applied in several cases. The option "striplabels" tells prooftrans to
remove all label attributes on clauses.

Unfortunately, the output of Prooftrans usually cannot be used as the input to another Prooftrans job, because
Prooftrans expects its input to have specific keywords and standard-form proofs.

No Transformation

If no additional argument is given, Prooftrans simply extracts the proof from the Prover9 output file.

prooftrans -f subset_trans.out > subset_trans.proof1

Renumber the Steps

The argument renumber tells Prooftrans to renumber the steps of each proof consecutively, starting with step 1.
The expand, parents_only, and xml transformations can be used with the renumber transformation.

prooftrans renumber -f subset_trans.out > subset_trans.proof2

Simplify Justifications

The argument parents_only tells Prooftrans list only the parents in the justifications, not the details about
inference rules or positions. The expand and renumber transformations can be used with the
parents_only transformation.

prooftrans parents_only -f subset_trans.out > subset_trans.proof3

Expand Steps

The argument expand tells Prooftrans to produce more detailed proofs in which

all hyper- and UR-resolution steps are replaced with binary resolution steps,•
all demodulation sequences are replaced with paramodulation steps, and•
all unit deletion simplifications are replaced with resolution steps.•

Note to author: this is a bad example, because only one step gets expanded.

prooftrans expand -f subset_trans.out > subset_trans.proof4

Note that when a step is expanded (step 22 in this example), the new steps are identified by appending 'A', 'B', etc.
to the number of the original step.

The renumber, parents_only, and hints transformations can be used with the expand transformation.

XML Proofs

The options xml or XML tell Prooftrans to produce proofs in XML. The options expand and renumber can be
used with the XML transformation.

prooftrans xml -f subset_trans.out > subset_trans.proof5.xml

Prover9 Manual

88 Using Prooftrans

The preceding output is displayed by your browser not as XML, but as some transformation of the XML, because
the XML refers to an XML stylesheet, telling the browser how to transform the XML into HTML.

To see the XML source, click "View -> Frame Source" (or something like that) in your browser while viewing the
proof.

Here is the DTD for Prover9 XML proofs. (If you get an error, click "View -> Page Source".)

IVY Proofs

The options ivy or IVY tell Prooftrans to produce very detailed proofs that can be checked with the Ivy proof
checker.

prooftrans ivy -f subset_trans.out > subset_trans.proof6

Ivy proofs have a only 5 types of step: input, propositional, new_symbol, flip, instantiate,
resolve, and paramod. The resolve and paramod do not involve unification; instances are generated first
as separate steps, and then resolve or paramod are applied to identical atomic formulas or terms.

The Ivy proof checker cannot check steps justified by new_symbol.

Proofs to Hints

The option hints tells Prooftrans to take all of the proofs in the file and produce one list of hints that can be
given to Prover9 to guide subsequent searches on related conjectures.

prooftrans hints -f subset_trans.out > subset_trans.proof7

If there is more than one proof in the file, the proofs will probably share many steps. The list of hints that
Prooftrans produces will be the union of the steps in the proofs; that is, the duplicate steps will be removed.

The expand transformation can be used with the hints transformation.

The label option tells prooftrans to attach label attributes to the hint clauses. The labels consist of the string given
on the command line and a sequence number generated by prooftrans. The user's command shell may require that
the label be quoted, and if the the label is not a legal LADR constant, prooftrans will enclose the label in double
quotes.

prooftrans hints -label 'job8' -f subset_trans.out > subset_trans.proof8

Next Section: FOF-Prover9

Prover9 Manual

XML Proofs 89

http://www.cs.unm.edu/~mccune/ivy_check_prover9/
http://www.cs.unm.edu/~mccune/ivy_check_prover9/

Prover9 Manual

90 Proofs to Hints

Prover9 Manual Version Aug-2007

FOF-Prover9
FOF (First-Order Formula) reduction is a method of attempting to simplify a problem by reducing it to an
equivalent set of independent subproblems. A trivial example is to reduce the conjecture A B to the pair of
problems A -> B and B -> A.

The problem reduction uses a miniscope method [Champeaux-miniscope] that is quite powerful in some cases,
but it can easily blow up on complex formulas. Therefore, if the reduction procedure fails to terminate within a
few seconds, or if the subproblems it produces are more complex than the original problem, the reduction attempt
is aborted (and the user may wish to try the ordinary Prover9 program instead). If the reduction succeeds, each
subproblem is given to the ordinary Prover9 search module.

Input files accepted by FOF-Prover9 are the same as those accepted by Prover9, and when FOF-Prover9 runs the
search module on a subproblem, is uses all of the options given in the input file.

An Example of FOF Reduction

This example was given by Peter Andrews as a challenge problem for resolution systems in the 1970s.
FOF-Prover9's miniscope procedure reduces it to 32 trivial subproblems. (More powerful miniscope methods can
solve the problem by reducing it to 0 subproblems.)

fof-prover9 -f andrews.in > andrews.out

Here is the same input run with ordinary Prover9.

prover9 -f andrews.in > andrews.out2

The preceding example is artificial and seems tailor-made for FOF reduction. Other, more realistic examples can
be found in the standard set of Prover9 examples.

Next Section: More Programs

Prover9 Manual

FOF-Prover9 91

http://www.cs.unm.edu/~mccune/prover9/examples

Prover9 Manual

92 An Example of FOF Reduction

Prover9 Manual Version Aug-2007

Other LADR Prograns
The page describes several other programs that have constructed with the same code base (LADR) as Prover9,
Prooftrans, Mace4, and Interpformat.

When we write that a program takes a "stream" of objects, we mean that it reads them from the standard input,
and the objects are not enclosed in objects(..) and end_of_list.

When we write that a program takes a "set" of objects, we mean that the filename containing the objects is an
argument to the program, and the objects are not enclosed in objects(..) and end_of_list.

When we write that a program takes a "list" of objects, we mean that the filename containing the objects is an
argument to the program, and the objects are enclosed in objects(..) and end_of_list.

Contents

Clausefilter -- filter formulas with models•
Clausetester -- check formulas in models•
Interpfilter -- filter models with formulas•
Rewriter -- demodulate terms•
TPTP_to_LADR -- translate TPTP formulas to LADR formulas•
LADR_to_TPTP -- translate LADR formulas to TPTP formulas•

Clausefilter

Given a set of interpretations, a test to perform, and a stream of formulas, this program outputs the formulas that
pass the test. (If non-clausal formulas with free variables are given, their universal closures are used and output.)

The accepted tests are true_in_all, true_in_some, false_in_all, and false_in_some.

Example: given a set of non-modular orthomodular lattices and a stream of identities, print the identities that are
false in all of the lattices. This job was used when searching for modular ortholattice (MOL) single axioms: any
MOL single axiom is false in all non MOLs.

clausefilter non-MOL-OML.interps false_in_all < MOL-cand.296 > MOL-cand.238

Clausetester

This program takes a set of interpretations and stream of formulas. For each formula, the interpretations in which
the formula is true are shown, and at the end the number of formulas true in each interpretation is shown. (If
non-clausal formulas with free variables are given, their universal closures are used and output.)

Prover9 Manual

Other LADR Prograns 93

Example:

clausetester uc-18.interps < uc-hunt.clauses > uc-hunt.out

Interpfilter

Given a set of formulas, a test to perform, and a stream of interpretations, this program outputs the interpretations
that pass the test. (If non-clausal formulas with free variables are given, their universal closures are used.)

The accepted tests are all_true, some_true, all_false, and some_false.

Example: from a list of quasigroups, extract the associative-commutaive ones.

interpfilter assoc-comm.clauses all_true < qg4.interps > qg4-ac.interps

Rewriter

Rewrite a stream of terms with a list of demodulators. The demodulators are used left-to-right as given, and they
are not checked for termination.

Basic example that canonicalizes group expressions:

rewriter group.demods < group-terms.in > group-terms.out

This example canonicalizes Boolean ring expressions. It uses associative-commutative (AC) operations and the
op command to change the parsing rules.

rewriter bool-ring.demods < bool-ring.in > bool-ring.out

This example rewrites identities in terms of {meet,join,complementation} into the Sheffer stroke.

rewriter BA-Sheffer.demods < BA4.in > BA4.out

TPTP Translators

The TPTP Problem Library contains thousands of problems for theorem provers, and the TPTP Language is
widely used in the community. LADR has two programs to translate between the LADR and TPTP languages.
These programs are new and experimenal, and they do not support all of the language features.

TPTP_to_LADR This program takes a TPTP problem file and produces a
bare input file suitable for input to Prover9 or Mace4. For example,

tptp_to_ladr < PUZ031-1.p > PUZ031-1.in
prover9 -f PUZ031-1.in > PUZ031-1.out

If you prefer, those two processes can be piped together:

tptp_to_ladr < PUZ031-1.p | prover9 > PUZ031-1.out2

Prover9 Manual

94 Clausetester

http://www.cs.miami.edu/~tptp/
http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html

Some of the TPTP language features that are not yet supported are comment blocks, system comments, real
numbers, natural numbers as distinct objects, and distinct objects with double quotes.

Some future version of LADR will likely support direct input of TPTP files to Prover9 and Mace4, without
having to invoke a translator.

LADR_to_TPTP This program takes a Prover9 input file and produces a
TPTP problem file. A difficulty with this kind of translation is that TPTP
accepts a more restriced class of function and predicate symbols. When
the translator sees symbols that are not accepted by TPTP, it introduces
new symbols, and it gives the symbol mapping as comments in the output.
Ordinary TPTP constant, function, and predicate symbols must start with
lower case a-z, and any remaining characters must be alphanumeric or _
(underscore). That is, they must match the (Unix-style) regular expression
"[a-z][a-zA-Z0-9_]*".

Here is an example that contains several unacceptable symbols.

ladr_to_tptp < RBA-2.in > RBA-2.p

Next Section: All Options

Prover9 Manual

TPTP_to_LADR This program takes a TPTP problem file and produces abare input file suitable for input to Prover9 or Mace4. For example,95

Prover9 Manual

96LADR_to_TPTP This program takes a Prover9 input file and produces aTPTP problem file. A difficulty with this kind of translation is that TPTPaccepts a more restriced class of function and predicate symbols. Whenthe translator sees symbols that are not accepted by TPTP, it introducesnew symbols, and it gives the symbol mapping as comments in the output.Ordinary TPTP constant, function, and predicate symbols must start withlower case a-z, and any remaining characters must be alphanumeric or _(underscore). That is, they must match the (Unix-style) regular expression"[a-z][a-zA-Z0-9_]*".

Prover9 Manual Version Aug-2007

Prover9 Options
There are three kinds of options:

Flags are Boolean-valued options which can be changed with the set and clear commands, e.g.,
set(clocks).
set(print_given).

•

Parms are integer-valued options which can be changed with the assign command, e.g.,
assign(max_weight, 30).

•

Stringparms are string-valued options which can be changed with the assign command, e.g.,
assign(order, kbo).

•

Option Dependencies

Several of the flags and parameters cause other flags and parameters to be changed. In some cases, that is the only
direct effect they have. For example, if you clear(auto), you will see the following in the output.

clear(auto).
 % clear(auto) -> clear(auto_inference).
 % clear(auto_inference) -> clear(predicate_elim).
 % clear(auto_inference) -> assign(eq_defs, pass).
 % clear(auto) -> clear(auto_limits).
 % clear(auto_limits) -> assign(max_weight, 2147483647).
 % clear(auto_limits) -> assign(sos_limit, -1).

The lines starting with "%" are the dependent options that are changed in behalf of clear(auto). Note the
sub-dependencies in this example.

The option dependencies can be undone by simply changing the dependent option afterward, as in the following
example input.

clear(auto).
set(predicate_elim).

Option Listing

The option names below are links to the sections containing the descriptions.

From Page Clauses and Formulas

set(prolog_style_variables).
clear(prolog_style_variables). % default clear

Prover9 Manual

Prover9 Options 97

From Page Automatic Modes

set(auto). % default set
clear(auto).

set(auto_inference). % default set
clear(auto_inference).

set(auto_process). % default set
clear(auto_process).

set(auto_limits). % default set
clear(auto_limits).

set(auto2).
clear(auto2). % default clear

assign(lrs_ticks, n). % default n=-1, range [-1 .. INT_MAX]

assign(lrs_interval, n). % default n=50, range [1 .. INT_MAX]

assign(min_sos_limit, n). % default n=0, range [0 .. INT_MAX]

From Page Term Ordering

assign(order, string). % default string=lpo, range [lpo,rpo,kbo]

set(inverse_order). % default set
clear(inverse_order).

assign(eq_defs, string). % default string=unfold, range [unfold,fold,pass]

From Page More Search Prep

set(expand_relational_defs).
clear(expand_relational_defs). % default clear

set(predicate_elim). % default set
clear(predicate_elim).

Prover9 Manual

98 From Page Automatic Modes

assign(fold_denial_max, n). % default n=0, range [-1 .. INT_MAX]

set(sort_initial_sos).
clear(sort_initial_sos). % default clear

set(process_initial_sos). % default set
clear(process_initial_sos).

From Page Search Limits

assign(sos_limit, n). % default n=20000, range [-1 .. INT_MAX]

assign(max_given, n). % default n=-1, range [-1 .. INT_MAX]

assign(max_kept, n). % default n=-1, range [-1 .. INT_MAX]

assign(max_megs, n). % default n=200, range [-1 .. INT_MAX]

assign(max_seconds, n). % default n=-1, range [-1 .. INT_MAX]

assign(max_minutes, n). % default n=-1, range [-1 .. INT_MAX]

assign(max_hours, n). % default n=-1, range [-1 .. INT_MAX]

assign(max_days, n). % default n=-1, range [-1 .. INT_MAX]

From Page Selecting the Given Clause

assign(age_part, n). % default n=1, range [0 .. INT_MAX]

assign(weight_part, n). % default n=0, range [0 .. INT_MAX]

assign(false_part, n). % default n=4, range [0 .. INT_MAX]

assign(true_part, n). % default n=4, range [0 .. INT_MAX]

assign(random_part, n). % default n=0, range [0 .. INT_MAX]

Prover9 Manual

From Page More Search Prep 99

assign(hints_part, n). % default n=INT_MAX, range [0 .. INT_MAX]

set(default_parts). % default set
clear(default_parts).

assign(pick_given_ratio, n). % default n=0, range [0 .. INT_MAX]

set(lightest_first).
clear(lightest_first). % default clear

set(breadth_first).
clear(breadth_first). % default clear

set(random_given).
clear(random_given). % default clear

assign(random_seed, n). % default n=0, range [-1 .. INT_MAX]

set(input_sos_first). % default set
clear(input_sos_first).

From Page Inference Rules

set(binary_resolution).
clear(binary_resolution). % default clear

set(neg_binary_resolution).
clear(neg_binary_resolution). % default clear

set(ordered_res). % default set
clear(ordered_res).

set(check_res_instances).
clear(check_res_instances). % default clear

assign(literal_selection, string). % default string=maximal_negative, range [maximal_negative, all_negative, none]

set(positive_inference). % default set
clear(positive_inference).

set(pos_hyper_resolution).

Prover9 Manual

100 From Page Selecting the Given Clause

clear(pos_hyper_resolution). % default clear

set(hyper_resolution).
clear(hyper_resolution). % default clear

set(neg_hyper_resolution).
clear(neg_hyper_resolution). % default clear

set(ur_resolution).
clear(ur_resolution). % default clear

set(pos_ur_resolution).
clear(pos_ur_resolution). % default clear

set(neg_ur_resolution).
clear(neg_ur_resolution). % default clear

set(initial_nuclei).
clear(initial_nuclei). % default clear

assign(ur_nucleus_limit, n). % default n=-1, range [-1 .. INT_MAX]

set(paramodulation).
clear(paramodulation). % default clear

set(ordered_para). % default set
clear(ordered_para).

set(check_para_instances).
clear(check_para_instances). % default clear

set(para_from_vars). % default set
clear(para_from_vars).

assign(para_lit_limit, n). % default n=-1, range [-1 .. INT_MAX]

set(para_units_only).
clear(para_units_only). % default clear

set(basic_paramodulation).
clear(basic_paramodulation). % default clear

Prover9 Manual

From Page Inference Rules 101

From Page Processing Inferred Clauses

set(lex_order_vars).
clear(lex_order_vars). % default clear

assign(demod_step_limit, n). % default n=1000, range [-1 .. INT_MAX]

assign(demod_size_limit, n). % default n=1000, range [-1 .. INT_MAX]

set(back_demod).
clear(back_demod). % default clear

set(lex_dep_demod). % default set
clear(lex_dep_demod).

assign(lex_dep_demod_lim, n). % default n=11, range [-1 .. INT_MAX]

set(lex_dep_demod_sane). % default set
clear(lex_dep_demod_sane).

set(unit_deletion).
clear(unit_deletion). % default clear

set(back_unit_deletion).
clear(back_unit_deletion). % default clear

set(cac_redundancy). % default set
clear(cac_redundancy).

assign(max_literals, n). % default n=-1, range [-1 .. INT_MAX]

assign(max_depth, n). % default n=-1, range [-1 .. INT_MAX]

assign(max_vars, n). % default n=-1, range [-1 .. INT_MAX]

assign(max_weight, n). % default n=100, range [INT_MIN .. INT_MAX]

set(safe_unit_conflict).
clear(safe_unit_conflict). % default clear

Prover9 Manual

102 From Page Processing Inferred Clauses

set(factor).
clear(factor). % default clear

assign(new_constants, n). % default n=0, range [-1 .. INT_MAX]

set(back_subsume). % default set
clear(back_subsume).

From Page Output Files

set(echo_input). % default set
clear(echo_input).

set(quiet).
clear(quiet). % default clear

set(print_initial_clauses). % default set
clear(print_initial_clauses).

set(print_given). % default set
clear(print_given).

set(print_gen).
clear(print_gen). % default clear

set(print_kept).
clear(print_kept). % default clear

set(print_labeled).
clear(print_labeled). % default clear

set(print_clause_properties).
clear(print_clause_properties). % default clear

set(print_proofs). % default set
clear(print_proofs).

set(default_output). % default set
clear(default_output).

assign(report, n). % default n=-1, range [-1 .. INT_MAX]

Prover9 Manual

From Page Output Files 103

assign(stats, string). % default string=lots, range [none,some,lots,all]

set(clocks).
clear(clocks). % default clear

set(bell). % default set
clear(bell).

From Page Weighting

assign(constant_weight, n). % default n=1, range [INT_MIN .. INT_MAX]

assign(sk_constant_weight, n). % default n=1, range [INT_MIN .. INT_MAX]

assign(variable_weight, n). % default n=1, range [INT_MIN .. INT_MAX]

assign(not_weight, n). % default n=0, range [INT_MIN .. INT_MAX]

assign(or_weight, n). % default n=0, range [INT_MIN .. INT_MAX]

assign(prop_atom_weight, n). % default n=1, range [INT_MIN .. INT_MAX]

assign(nest_penalty, n). % default n=0, range [0 .. INT_MAX]

assign(skolem_penalty, n). % default n=1, range [0 .. INT_MAX]

assign(depth_penalty, n). % default n=0, range [INT_MIN .. INT_MAX]

assign(var_penalty, n). % default n=0, range [INT_MIN .. INT_MAX]

assign(default_weight, n). % default n=INT_MAX, range [INT_MIN .. INT_MAX]

From Page Goals and Denials

assign(max_proofs, n). % default n=1, range [-1 .. INT_MAX]

set(restrict_denials).
clear(restrict_denials). % default clear

Prover9 Manual

104 From Page Weighting

set(reuse_denials).
clear(reuse_denials). % default clear

set(auto_denials). % default set
clear(auto_denials).

From Page Hints

set(breadth_first_hints).
clear(breadth_first_hints). % default clear

set(degrade_hints). % default set
clear(degrade_hints).

set(back_demod_hints). % default set
clear(back_demod_hints).

set(collect_hint_labels).
clear(collect_hint_labels). % default clear

From Page Semantic Guidance

assign(eval_limit, n). % default n=1024, range [-1 .. INT_MAX]

Next Section: Glossary

Prover9 Manual

From Page Goals and Denials 105

Prover9 Manual

106 From Page Semantic Guidance

Prover9 Manual Version Aug-2007

Glossary
Under construction. (Send suggestions of terms to include.)

Terms, Clauses, Formulas, Interpretations

These definitions apply to first-order unsorted logic. See a book on first-order logic for more formal definitions of
these concepts.

Term

A recursive definition of first-order unsorted terms.

A variable is a term,♦
a constant is a term, and♦
an n-ary function symbol applied to n terms is a term.♦

Atomic Formula

An n-ary predicate symbol applied to n terms is an atomic formula.

Formula

An atomic formula is a formula,♦
if F and G are formulas, then the following are formulas.

(-F)◊
(F | G)◊
(F & G)◊
(F -> G)◊
(F G)◊

♦

if F is a formula and x is a variable, then the following are formulas.
(all x F)◊
(exists x F)◊

♦

When writing formulas for Prover9, many of the parentheses can be omitted; see the page Clauses
and Formulas tor the parsing rules.

Free Variables

A free variable is a variable not bound by any quantifier. A closed formula has no free variables.
An open formula has at least one free variable.

Prover9 Manual

Glossary 107

Prover9's default rule for distinguishing free variables from constants is that free varaibles start
with (lower case) 'u' through 'z'.

Literal

A literal is either an atomic formula or the negation of an atomic formula.

Clause

A clause is a formula consisting of a disjunction of literals. All variables in a clause are assumed
to be universally quantified.

Interpretation

An interpretation of a first-order language consists of

of a set of objects called the domain,♦
an n-ary function over the domain into the domain for each n-ary function symbol in the
language,

♦

an n-ary relation over the domain for each n-ary predicate symbol in the language.♦

Given an interpretation, each term in the language evaluates to a member of the domain, and each clause or closed
formula in the language evaluates to TRUE or to FALSE.

Types of Clause

Unit Clause

A unit clause has exactly one literal.

Positive Clause, Negative Clause, Mixed Clause

A positive clause has no negative literals. A negative clause has no positive literals. Note that the
empty clause is both positive and negative. A mixed clause has at least one literal of each sign.

Horn Clause, Horn Set

A Horn clause has at most one positive literal. A Horn set is a set of Horn clauses.

Definite Clause

A definite clause has exactly one positive literal.

Prover9 Manual

108 Terms, Clauses, Formulas, Interpretations

Logic Transformations

Negation Normal Form (NNF)

A formula is in negation normal form if the only logic connectives are negation, conjunction,
disjunction, quantification (universal or existential), and if all negation operations are applied
directly to atomic formulas.

Conjunctive Normal Form (CNF)

This definition applies to quantifier-free formulas.

A formula is in conjunctive normal form if (1) the only logic connectives are negation,
conjunction, and disjunction, (2) no negation is applied to a conjunction or a disjunction, and (3)
no disjunction is applied to a conjunction.

Alternate definition: A formula is in CNF if it is a clause or a conjunction of clauses.

Skolemization

Skolemization is the process of replacing existentially quantified variables in a formula with new
constants (called Skolem constants) or functions (called Skolem functions). If an existential
quantifier is in the scope of some universal quantifiers, the new symbol is a function of the
corresponding universally quantified variables. The result of Skolemization is not, strictly
speaking, equivalent to the original formula, because new symbols may have been introduced, but
the result is inconsistent iff the the original formula is inconsistent.

Clausification

Clausification is the process of translating a formula into a conjunction of clauses. A standard
way is NNF conversion, Skolemization, moving universal quantifiers to the top (renaming bound
variables if necessary), CNF conversion, and finally removing universal quantifiers. The variables
in each resulting clause are implicitly universally quantified.

Each step produces an equivalent formula, except for Skolemization, which produces an
equiconsistent formula, so the result of Clausification is inconsistent iff the original formula is
inconsistent.

Universal Closure

The universal closure of a formula is constructed by universally quantifying, at the top of the
formula, all free variables in the formula.

Term Ordering Terminology

Knuth-Bendix Ordering (KBO)

Prover9 Manual

Logic Transformations 109

Lexicographic Path Ordering (LPO)

Recursive Path Ordering (RPO)

Maximal Literal

A literal is maximal in a clause, with respect to some term ordering, if no literal in the clause is
greater. The terms orderings used by Prover9 (LPO, KBO, RPO) are, in general, only partial, so
clauses do not necessarily have greatest literals.

Inference and Simplification Rules

Completeness

An inference system is complete if it is capable (given enough time and memory) of proving any
theorem (in the language of the inference system).

Binary Resolution

The inference rule binary resolution takes two clauses containing unifiable literals of opposite
sign and produces a clause consisting of the remaining literals to which the most general unifying
substitution has been applied. The rule can be viewed as a generalization of modus ponens.

Restrictions on Binary Resolution.

Positive resolution: one of the parents is is a positive clause.♦
Negative resolution: one of the parents is is a negative clause.♦
Unit resolution: one of the parents is is a unit clause.♦

Ordered Inference, Literal Selection

Ordered Inference is a restriction of resolution or paramdulation based on literal ordering. In
some cases, inferences can be restricted to maximal literals.

Literal selection is a restriction of resolution or paramdulation. In each clause, some subset of the
negative literals are marked as selected (the selection may be arbitrary), and in some cases
inferences can be restricted to selected literals.

Factoring

The inference rule factoring takes one clause containing two or more literals (of the same sign)
that all unify. The most general unifying substitution is applied to the parent, and the unified
literals become identical and are merged into one.

Factoring in Prover9 is binary, operating on two literals at a time.

Hyperresolution

Prover9 Manual

110 Term Ordering Terminology

The hyperresolution inference rule (also called positive hyperresolution) takes a non-positive
clause (called the nucleus) and simultaneously resolves each of its negative literals with positive
clauses (called the satellites), producing a positive clause. Hyperresolution can be viewed as a
sequence of positive binary resolution steps ending with a positive clause.

Negative hyperresolution is similar to hyperresolution but with the signs reversed.

UR-Resolution

The UR-resolution (unit-resulting resolution) inference rule takes a nonunit clause (called the
nucleus) and resolves all but one of its literals with unit clauses (called the satellites), producing a
unit clause.

Positive UR-resolution is UR-resolution with the constraint that the result must be a positive unit
clause.

Negative UR-resolution is UR-resolution with the constraint that the result must be a negative
unit clause.

"From" and "Into" in Paramodulation

A paramodulation inference consists of two parents and a child. The parent containing the
equality used for the replacement is the from parent or the from clause, the equality is the from
literal, and the side of the equality that unifies with the term being replaced is the from term.

The replaced term is the into term, the literal containing the replaced term is the into literal, and
the parent containing the replaced term is the into parent or into clause.

Superposition is a restricted form of paramodulation in which substitution is not allowed into the
lighter side of an equation.

Positive Paramodulation

Positive paramodulation is a restriction of paramodulation in which the "from" clause is positive,
and if the "into" literal is positive, the "into" clause is also positive.

Demodulation, Back Demodulation

Demodulation (also called rewriting) is the process of using a set of oriented equations
(demodulators) to rewrite (simplify, canonicalize) terms. If the demodulators have good
properties, demodulation terminates.

Forward demodulation (or just demodulation) is the process of using a set of demodulators to
rewrite newly generated clauses.

Back demodulation is the process of using a new demodulator to simplify previously stored
clauses.

Unit Deletion, Back Unit Deletion

Prover9 Manual

Inference and Simplification Rules 111

Unit deletion is analogous to demodulation. The difference is that unit clauses, rather than
equations, are used for simplification.

Unit deletion is the process of using unit clauses to remove literals from newly generated clauses.

Back unit deletion is the process of using a new unit clause to remove literals from previously
stored clauses.

Subsumption, Forward and Backward Subsumption

Clause C subsumes clause D if the variables of C can be instantiated in such a way that it
becomes a subclause of D. If C subsumes D, then D can be discarded, because it is weaker than or
equivalent to C. (There are some proof procedures that require retention of subsumed clauses.)

Forward subsumption (or just subsumption) is the process of deleting a newly derived clause if it
is subsumed by some previously stored clause.

Back subsumption is the process of deleting all previously stored clauses that are subsumed by a
newly derived clause.

Unit Conflict

Unit Conflict is an inference rule that derives a contradiction from unit clauses, for example, from
P(a,b) and -P(x,b).

Prover9 Terminology

Given Clause

The given clause loop drives the inference process int Prover9. At each iteration of the loop, a
given clause is selected from the sos list, moved the the usable list, and then inferences are made
using the given clause and other clauses in the usable list.

Sos List, Assumptions List, Usable List

During the search, the usable list is the list of clauses that are available for making inferences
with the given clause, and the sos list is the list of clauses that are waiting to be selected as given
clauses. Clauses in the sos list are not available for making primary inferences, but they can be
used to simplify inferred clauses by demodulation and unit deletion.

The assumptions list is identical to the sos list; that is, "assumptions" is a synonym for "sos".

Prover9 also accepts non-clausal formulas in lists named usable or sos. Such formulas are
transformed to clauses which are placed in the clause list of the same name.

The name "sos" is used because it can be employed to achieve the set-of-support strategy, which
requires that all lines of reasoning start with a subset of the input clauses called the set of support.
The clauses or formulas in the initial set of support are placed the sos list, and the rest of the

Prover9 Manual

112 Prover9 Terminology

clauses or formulas are placed in the usable list.

Goal, Goals List

A goal is the conclusion of a conjecture, stated in positive form. Each goals is transformed to
clauses by constructing its universal closure, negation, then clausification.

If there is more than one goal, Prover9 may impose restrictions on the structure of the goals.

Hint, Hints List

Hints are clauses that are intended to guide Prover9 toward proofs. Hints are not part of the
problem specification; that is, they are not used for making inferences. They are used only as a
component of the weighting function for selecting given clauses.

Initial Clause

A clause is an initial clause if it exists at the time when the first given clause is selected. Initial
clauses are not necessarily input clauses, because they may be created during preprocessing, for
example, by rewriting or clausification.

Denial

In Prover9 terminology, a negative clause in a Horn set is called a denial, because such clauses
usually come from the negation of a conclusion. (The term does not apply to non-Horn sets,
because a proof of a non-Horn set may require more than one negative clause.)

FOF Reduction

FOF (First-Order Formula) reduction is a method of attempting to simplify a problem by
reducing it to an equivalent set of independent subproblems. A trivial example is to reduce the
conjecture A B to the pair of problems A -> B and B -> A.

Lex-Dependent Demodulator

A lex-dependent demodulator is one that cannot be oriented by the primary term ordering (LPO
or KBO). An example is commutativity of a binary operation. During demodulation, a
lex-dependent demodulator is applied only if it produces a term that is smaller in the primary
term ordering.

Depth of Term, Atom, Literal, Clause

depth of variable, constant, or propositional atom: 0;♦
depth of term or atom with arguments: one more than the maximum argument depth;♦
depth of literal: depth of its atom (negation signs don't count);♦
depth of clause: maximum of depths of literals;♦

For example, p(x) | -p(f(x)) has depth 2.

Relational Definition

Prover9 Manual

Prover9 Terminology 113

A relational definition for an n-ary relation (say P with n=3) is a closed formula of the form
(using Prover9 syntax)

all x all y all z (P(x,y,z) f)

for some formula f that does not contain the symbol P.

Equational Definition

An equational definition for an n-ary function (say f with n=3) is an equation (using Prover9
syntax)

f(x,y,z) = t

for some term t that does not contain the symbol f and that does not contain free variables other
than x, y, and z.

Next Section: References

Prover9 Manual

114 Prover9 Terminology

Prover9 Manual Version Aug-2007

References
Not done yet.

[Bachmair-Ganzinger-res]
L. Bachmair and H. Ganzinger. "Resolution Theorem Proving". Chapter 2 in Handbook of Automated
Reasoning (ed. A. Robinson and A. Voronkov), 2001. Preliminary version.

[Nieuwenhuis-Rubio-para]
R. Nieuwenhuis and A. Rubio. "Paramodulation-Based Theorem Proving". Chapter 7 in Handbook of
Automated Reasoning (ed. A. Robinson and A. Voronkov), 2001.

[Champeaux-miniscope]
D. Champeaux. "Sub-problem finder and instance checker, two cooperating modules for theorem
provers". J. ACM, 33(4):633--657, 1986.

[Dershowitz-termination]
N. Dershowitz. "Termination of rewriting". J. Symbolic Computation, 3:69-116, 1987.

[McCune-Otter33]
W. McCune. Otter 3.3 Reference Manual. Tech. Memo ANL/MCS-TM-263, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL, August 2003.

[McCune-Mace4]
W. McCune. Mace4 Reference Manual and Guide. Tech. Memo ANL/MCS-TM-264, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.

[RV-lrs]
A. Riazanov and A. Voronkov. "Limited resource strategy in resolution theorem proving". J. Symbolic
Computation, 36(1-2):101-115, 2003.

[Veroff-hints]
R. Veroff. "Using hints to increase the effectiveness of an automated reasoning program: Case studies". J.
Automated Reasoning, 16(3):223--239, 1996.

[Veroff-sketches]
R. Veroff. "Solving open questions and other challenge problems using proof sketches". J. Automated
Reasoning, 27(2):157--174, 2001.

Prover9 Manual

References 115

http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1997-2-005

Prover9 Manual

116 References

	Prover9 Manual
	Prover9 Manual
	Prover9 Manual: Installation
	Prover9 Manual: Running Prover9
	Prover9 Manual: Input Files
	Prover9 Manual: Clauses and Formulas
	Prover9 Manual: Automatic Modes
	Prover9 Manual: Term Ordering
	Prover9 Manual: More Search Prep
	Prover9 Manual: Search Limits
	Prover9 Manual: The Inference Loop
	Prover9 Manual: Selecting the Given Clause
	Prover9 Manual: Inference Rules
	Prover9 Manual: Processing Inferred Clauses
	Prover9 Manual: Output Files
	Prover9 Manual: Weighting
	Prover9 Manual: Attributes
	Prover9 Manual: Actions
	Prover9 Manual: Goals and Denials
	Prover9 Manual: Hints
	Prover9 Manual: Semantic Guidance
	Prover9 Manual: Mace4
	Prover9 Manual: Mace4 Input
	Prover9 Manual: Mace4 Options
	Prover9 Manual: Interpformat
	Prover9 Manual: Isofilter
	Prover9 Manual: Prooftrans
	Prover9 Manual: FOF-Prover9
	Prover9 Manual: Other LADR Prograns
	Prover9 Manual: Options
	Prover9 Manual: Glossary
	Prover9 Manual: References

