
{
Breaking the x86 ISA

domas / @xoreaxeaxeax / Black Hat 2017

 Christopher Domas

 Cyber Security Researcher @

Battelle Memorial Institute

./bio

 We don’t trust software.

 We audit it

 We reverse it

 We break it

 We sandbox it

Trust.

 But the processor itself?

 We blindly trust

Trust.

 Why?

 Hardware has
all the same problems as software

 Secret functionality?
 Appendix H.

 Bugs?
 F00F, FDIV, TSX, Hyperthreading, Ryzen

 Vulnerabilities?
 SYSRET, cache poisoning, sinkhole

Trust.

 We should stop

blindly trusting our hardware.

Trust.

 What do we need to worry about?

 Historical examples

 ICEBP (f1)

 LOADALL (0f07)

 apicall (0ffff0)

Hidden instructions

So… what’s

this??

 Find out what’s really there

Goal: Audit the Processor

 How to find hidden instructions?

The challenge

 Instructions can be one byte …

 inc eax

 40

 … or 15 bytes ...

 lock add qword cs:[eax + 4 * eax + 07e06df23h], 0efcdab89h

 2e 67 f0 48 818480 23df067e 89abcdef

 Somewhere on the order of

1,329,227,995,784,915,872,903,807,060,280,344,576

possible instructions

The challenge

https://code.google.com/archive/p/corkami/wikis/x86oddities.wiki

 The obvious approaches don’t work:

 Try them all?

 Only works for RISC

 Try random instructions?

 Exceptionally poor coverage

 Guided based on documentation?

 Documentation can’t be trusted (that’s the point)

 Poor coverage of gaps in the search space

The challenge

 Goal:

 Quickly skip over bytes that don’t matter

The challenge

 Observation:

 The meaningful bytes of

an x86 instruction impact either

its length or its exception behavior

The challenge

 A depth-first-search algorithm

Tunneling

Guess an instruction:

Tunneling

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Execute the instruction:

Tunneling

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Observe its length:

Tunneling

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Increment the last byte:

Tunneling

00 01 00 00 00 00 00 00 00 00 00 00 00 00 00

Execute the instruction:

Tunneling

00 01 00 00 00 00 00 00 00 00 00 00 00 00 00

Observe its length:

Tunneling

00 01 00 00 00 00 00 00 00 00 00 00 00 00 00

 Increment the last byte:

Tunneling

00 02 00 00 00 00 00 00 00 00 00 00 00 00 00

Execute the instruction:

Tunneling

00 02 00 00 00 00 00 00 00 00 00 00 00 00 00

Observe its length:

Tunneling

00 02 00 00 00 00 00 00 00 00 00 00 00 00 00

 Increment the last byte:

Tunneling

00 03 00 00 00 00 00 00 00 00 00 00 00 00 00

Execute the instruction:

Tunneling

00 03 00 00 00 00 00 00 00 00 00 00 00 00 00

Observe its length:

Tunneling

00 03 00 00 00 00 00 00 00 00 00 00 00 00 00

 Increment the last byte:

Tunneling

00 04 00 00 00 00 00 00 00 00 00 00 00 00 00

Execute the instruction:

Tunneling

00 04 00 00 00 00 00 00 00 00 00 00 00 00 00

Observe its length:

Tunneling

00 04 00 00 00 00 00 00 00 00 00 00 00 00 00

 Increment the last byte:

Tunneling

00 04 01 00 00 00 00 00 00 00 00 00 00 00 00

Execute the instruction:

Tunneling

00 04 01 00 00 00 00 00 00 00 00 00 00 00 00

Observe its length:

Tunneling

00 04 01 00 00 00 00 00 00 00 00 00 00 00 00

 Increment the last byte:

Tunneling

00 04 02 00 00 00 00 00 00 00 00 00 00 00 00

000000000000000000000000000000

000100000000000000000000000000

000200000000000000000000000000

000300000000000000000000000000

000400000000000000000000000000

000401000000000000000000000000

000402000000000000000000000000

000403000000000000000000000000

000404000000000000000000000000

000405000000000000000000000000

000405000000010000000000000000

000405000000020000000000000000

000405000000030000000000000000

000405000000040000000000000000

When the last byte is FF…

Tunneling

C7 04 05 00 00 00 00 00 00 00 FF 00 00 00 00

… roll over …

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

 ... and move to the previous byte

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

This byte becomes the marker

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

 Increment the marker

Tunneling

C7 04 05 00 00 00 00 00 00 01 00 00 00 00 00

Execute the instruction

Tunneling

C7 04 05 00 00 00 00 00 00 01 00 00 00 00 00

Observe its length

Tunneling

C7 04 05 00 00 00 00 00 00 01 00 00 00 00 00

 If the length has not changed…

Tunneling

C7 04 05 00 00 00 00 00 00 01 00 00 00 00 00

 Increment the marker

Tunneling

C7 04 05 00 00 00 00 00 00 02 00 00 00 00 00

And repeat.

Tunneling

C7 04 05 00 00 00 00 00 00 02 00 00 00 00 00

Continue the process…

Tunneling

C7 04 05 00 00 00 00 00 00 FF 00 00 00 00 00

… moving back on each rollover

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

… moving back on each rollover

Tunneling

C7 04 05 00 00 00 00 00 FF 00 00 00 00 00 00

… moving back on each rollover

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 00 00 00 FF 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 00 00 FF 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 00 FF 00 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 FF 00 00 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 FF 00 00 00 00 00 00 00 00 00 00 00

…

Tunneling

C7 04 05 00 00 00 00 00 00 00 00 00 00 00 00

When you increment a marker…

Tunneling

C7 04 06 00 00 00 00 00 00 00 00 00 00 00 00

… execute the instruction …

Tunneling

C7 04 06 00 00 00 00 00 00 00 00 00 00 00 00

… and the length changes …

Tunneling

C7 04 06 00 00 00 00 00 00 00 00 00 00 00 00

… move the marker to

the end of the new instruction …

Tunneling

C7 04 06 00 00 00 00 00 00 00 00 00 00 00 00

Tunneling

C7 04 06 00 00 00 01 00 00 00 00 00 00 00 00

… and resume the process.

 Tunneling through the instruction space

lets us quickly skip over the bytes

that don’t matter,

and exhaustively search the bytes that do…

Tunneling

 … reducing the search space

from 1.3x1036 instructions

to ~100,000,000

(one day of

scanning)

Tunneling

 Catch:

requires knowing the instruction length

Instruction lengths

 Simple approach: trap flag

 Fails to resolve the length of faulting instructions

 Necessary to search privileged instructions:

 ring 0 only: mov cr0, eax

 ring -1 only: vmenter

 ring -2 only: rsm

Instruction lengths

 Solution: page fault analysis

Instruction lengths

 Choose a candidate instruction

 (we don’t know how long this instruction is)

Page fault analysis

0F 6A 60 6A 79 6D C6 02 6E AA D2 39 0B B7 52

 Configure two consecutive pages in memory

 The first with read, write, and execute permissions

 The second with read, write permissions only

Page fault analysis

 Place the candidate instruction in memory

 Place the first byte at the end of the first page

 Place the remaining bytes at the start of the second

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Execute (jump to) the instruction.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 The processor’s instruction decoder checks

the first byte of the instruction.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 If the decoder determines that another byte is

necessary, it attempts to fetch it.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 This byte is on a non-executable page,

so the processor generates a page fault.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 The #PF exception provides

a fault address in the CR2 register.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 If we receive a #PF, with CR2 set

to the address of the second page,

we know the instruction continues.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Move the instruction back one byte.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Execute the instruction.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 The processor’s instruction decoder checks

the first byte of the instruction.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 If the decoder determines that another byte is

necessary, it attempts to fetch it.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Since this byte is in an executable page,

decoding continues.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 If the decoder determines that another byte is

necessary, it attempts to fetch it.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 This byte is on a non-executable page,

so the processor generates a page fault.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Move the instruction back one byte.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Execute the instruction.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Continue the process while

we receive #PF exceptions

with CR2 = second page address

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Move the instruction back one byte.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Execute.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 Eventually, the entire instruction

will reside in the executable page.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 The instruction could run.

 The instruction could throw a different fault.

 The instruction could throw a #PF,
but with a different CR2.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 In all cases, we know the instruction has been

successfully decoded, so must reside entirely

in the executable page.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 With this, we know the instruction’s length.

Page fault analysis

0F 6A 60 6A 79 6D C6 02 …

 We now know how many bytes the

instruction decoder consumed

 But just because the bytes were decoded
does not mean the instruction exists

 If the instruction does not exist,

the processor generates the #UD exception

after the instruction decode

(invalid opcode exception)

Page fault analysis

 If we don’t receive a #UD, the instruction exists.

Page fault analysis

 Resolves lengths for:

 Successfully executing instructions

 Faulting instructions

 Privileged instructions:

 ring 0 only: mov cr0, eax

 ring -1 only: vmenter

 ring -2 only: rsm

Page fault analysis

 The “injector” process performs

the page fault analysis and

tunneling instruction generation

The Injector

 We’re fuzzing the same

device that we’re running on

 How do we make sure we don’t crash?

Surviving

 Step 1:

 Limit ourselves to ring 3

 We can still resolve instructions

living in deeper rings

 This prevents accidental total system failure

(except in the case of serious processor bugs)

Surviving

 Step 2:

 Hook all exceptions the instruction might generate

 In Linux:

 SIGSEGV

 SIGILL

 SIGFPE

 SIGBUS

 SIGTRAP

 Process will clean up after itself when possible

Surviving

 Step 3:

 Initialize general purpose registers to 0

 Arbitrary memory write instructions like

add [eax + 4 * ecx], 0x9102

will not hit the injecting process’s address space

Surviving

 Step 3 (continued):

 Memory calculations using an offset:

add [eax + 4 * ecx + 0xf98102cd6], 0x9102

would still result in non-zero accesses

 Could lead to process corruption

if the offset falls into the injector’s address space

Surviving

 Step 3 (continued):

 The tunneling approach ensures

offsets are constrained

 0x0000002F

 0x0000A900

 0x00420000

 0x1E000000

 The tunneled offsets will not fall into

the injector’s address space

 They will seg fault, but seg faults are caught

 The process still won’t corrupt itself

Surviving

 We’ve handled faulting instructions

 What about non-faulting instructions?

 The analysis needs to continue

after an instruction executes

Surviving

 Set the trap flag prior to

executing the candidate instruction

 On trap, reload the registers to a known state

Surviving

 With these…

 Ring 3

 Exception handling

 Register initialization

 Register maintenance

 Execution trapping

 … the injector survives.

Surviving

 So we now have a way to search the

instructions space.

 How do we make sense
of the instructions we execute?

Analysis

 The “sifter” process parses

the executions from the injector,

and pulls out the anomalies

The Sifter

 We need a “ground truth”

 Use a disassembler

 It was written based on the documentation

 Capstone

Sifting

 Undocumented instruction:

 Disassembler doesn’t recognize byte sequence and …

 Instruction generates anything but a #UD

 Software bug:

 Disassembler recognizes instruction but …

 Processor says the length is different

 Hardware bug:

 ???

 No consistent heuristic, investigate when something fails

Sifting

sandsifter - demo

(sandsifter)

(summarizer)

 We now have a way to

systematically scan our processor

for secrets and bugs

Scanning

 I scanned eight systems in my test library.

Scanning

 Hidden instructions

 Ubiquitous software bugs

 Hypervisor flaws

 Hardware bugs

Results

Hidden instructions

 Scanned: Intel Core i7-4650U CPU

Intel hidden instructions

 0f0dxx

 Undocumented for non-/1 reg fields

 0f18xx, 0f{1a-1f}xx

 Undocumented until December 2016

 0fae{e9-ef, f1-f7, f9-ff}

 Undocumented for non-0 r/m fields until June 2014

Intel hidden instructions

 dbe0, dbe1

 df{c0-c7}

 f1

 {c0-c1}{30-37, 70-77, b0-b7, f0-f7}

 {d0-d1}{30-37, 70-77, b0-b7, f0-f7}

 {d2-d3}{30-37, 70-77, b0-b7, f0-f7}

 f6 /1, f7 /1

Intel hidden instructions

 Scanned: AMD Athlon (Geode NX1500)

AMD hidden instructions

 0f0f{40-7f}{80-ff}{xx}

 Undocumented for range of xx

 dbe0, dbe1

 df{c0-c7}

AMD hidden instructions

 Scanned: VIA Nano U3500, VIA C7-M

VIA hidden instructions

 0f0dxx

 Undocumented by Intel for non-/1 reg fields

 0f18xx, 0f{1a-1f}xx

 Undocumented by Intel until December 2016

 0fa7{c1-c7}

 0fae{e9-ef, f1-f7, f9-ff}

 Undocumented by Intel for non-0 r/m fields until June 2014

 dbe0, dbe1

 df{c0-c7}

VIA hidden instructions

 What do these do?

 Some have been reverse engineered

 Some have no record at all.

Hidden instructions

Software bugs

 Issue:

 The sifter is forced to use a disassembler

as its “ground truth”

 Every disassembler we tried as the

“ground truth” was littered with bugs.

Software bugs

 Most bugs only appear in a few tools,

and are not especially interesting

 Some bugs appeared in all tools

 These can be used to an attacker’s advantage.

Software bugs

 66e9xxxxxxxx (jmp)

 66e8xxxxxxxx (call)

Software bugs

 66e9xxxxxxxx (jmp)

 66e8xxxxxxxx (call)

 In x86_64

 Theoretically, a jmp (e9) or call (e8),

with a data size override prefix (66)

 Changes operand size from default of 32

 Does that mean 16 bit or 64 bit?

 Neither. 66 is ignored by the processor here.

Software bugs

 Everyone parses this wrong.

Software bugs

Software bugs (IDA)

Software bugs (VS)

 An attacker can use this to

mask malicious behavior

 Throw off disassembly and jump targets

to cause analysis tools to miss the real behavior

Software bugs

Software bugs (objdump)

Software bugs (QEMU)

 66 jmp

 Why does everyone get this wrong?

 AMD: override changes operand to 16 bits,

instruction pointer truncated

 Intel: override ignored.

Software bugs

 Issues when we can’t agree on a standard

 sysret bugs

 Either Intel or AMD is going to be

vulnerable when there is a difference

 Impractically complex architecture

 Tools cannot parse a jump instruction

Software bugs

Hypervisor bugs

 In an Azure instance,

the trap flag is missed

on the cpuid instruction
 (cpuid causes a vmexit,

and the hypervisor forgets

to emulate the trap)

Azure hypervisor bugs

Azure hypervisor bugs

Hardware bugs

 Hardware bugs are troubling

 A bug in hardware means

you now have the same bug

in all of your software.

 Difficult to find

 Difficult to fix

Hardware bugs

 Scanned:

 Quark, Pentium, Core i7

Intel hardware bugs

 f00f bug on Pentium (anti-climactic)

Intel hardware bugs

 Scanned:

 Geode NX1500, C-50

AMD hardware bugs

 On several systems,

receive a #UD exception

prior to complete instruction fetch

 Per AMD specifications, this is incorrect.

 #PF during instruction fetch takes priority

 … until …

AMD hardware bugs

 Scanned:

 TM5700

Transmeta hardware bugs

 Instructions: 0f{71,72,73}xxxx

 Can receive #MF exception during fetch

 Example:

 Pending x87 FPU exception

 psrad mm4, -0x50 (0f72e4b0)

 #MF received after 0f72e4 fetched

 Correct behavior: #PF on fetch,

last byte is still on invalid page

Transmeta hardware bugs

 Found on one processor...

 An apparent “halt and catch fire” instruction
 Single malformed instruction in ring 3

locks the processor

 Tested on 2 Windows kernels, 3 Linux kernels

 Kernel debugging, serial I/O,
interrupt analysis seem to confirm

 Unfortunately,
not finished with responsible disclosure

 No details available
on chip, vendor, or instructions

(redacted) hardware bugs

r
in

g
 3

 p
r
o

c
e

s
s

o
r
 D

o
S

:

d
e

m
o

 First such attack found in 20 years

(since Pentium f00f)

(redacted) hardware bugs

 Significant security concern:

processor DoS from unprivileged user

(redacted) hardware bugs

 Details (hopefully) released within the next month

(stay tuned)

(redacted) hardware bugs

 Open sourced:

 The sandsifter scanning tool

 github.com/xoreaxeaxeax/sandsifter

 Audit your processor,

break disassemblers/emulators/hypervisors,

halt and catch fire, etc.

Conclusions

 I’ve only scanned a few systems

 This is a fraction of what I found on mine

 Who knows what exists on yours

Conclusions

 Check your system

 Send us results if you can

Conclusions

 Don’t blindly trust the specifications.

Conclusions

 Sandsifter lets us introspect

the black box at the heart of our systems.

Conclusions

github.com/xoreaxeaxeax

sandsifter

 M/o/Vfuscator

 REpsych

 x86 0-day PoC

 Etc.

Feedback? Ideas?

domas

@xoreaxeaxeax

xoreaxeaxeax@gmail.com

