reaking the xgb 1A

J

{ domas / @xoreaxeaxeax / Black Hat 201/

w Christopher Domas

@ Cyber Security Researcher @
Battelle Memorial Institute

/bI0

w We don’t trust software.
@ We audit it
@ \We reverse It
@ \We break it
@ \We sandbox it

Trust.

w But the processor itself”?
@ \We blindly trust

Trust.

w Why?
w Hardware has
all the same problems as software

w Secret functionality?
@ Appendix H.
w Bugs”?
@ FOOF, FDIV, TSX, Hyperthreading, Ryzen

w Vulnerabllities”?
@ SYSRET, cache poisoning, sinkhole

Trust.

xw We should stop
blindly trusting our hardware.

Trust.

w What do we need to worry about?

w Historical examples
= ICEBP [f1)
« LOADALL (0Of07)
@ apicall (OffffO]

Hidden instructions

Table A-2. One-byte Opcode Map: (OOH — F7H) *

0 | ! | 2 | 3 | 4 | 5 0 !
ADD UM i
3 2]
e, & | v, Gv | Go. K l G Ly I AL I W (2 e -~
ADG P PO
5y snt
e | o | e | owew | oam | e
AND SEC-EN DAAYY
esoe | evov | oees | ocEv | am | exn —
XOR SEG-55 Frvel
@ | wwor | o | Geny | mam | mxe o
o g geooral regaier (N Pratans
wAX eix WO wlix e8P abr ol
HEX HEX D HEX X X X1 RUX R HEX AL REX RX REX RXD
PG gecal ragaier
AXE 1CXir0 10X B SN2 APty Sivra 0015
PUBHA®Y POPASY souUND™ ARFL SECFS SEG-0S Oparand Aot
s iAD POPALT™ Gv, Ma Ew, Gow [Prwts) (Proftx) fiire titee
N SX (Prota) (Pt
O« Ev
N Sron-Sauserrutt g on condeion
o NO WNAEC NIVAENG 13 NENE %A A
weoruasie Grs 10 TEST XCHG
b, b Itz (T "l Ev. 1o En Gb Ev, v s, Go BV, Gy
& NOO‘F XCHO word SOt word o Quad word segaler wil) tAX
ALSE|FY) G .
XCHG . rAX XD I 1OX0 | Bt 1SR AP Suesa Qs
MOV MOVES MOVEWING CMPEB CMFEWID
Ao | mxov | oma | oveax e X Yo Xy ¥, Yo e Yo
MOV arenectans Dyte inf0 Byth mpister
ALBIDL I | CURSL. DURIDL, ® BLRIIL, b AWRIZL 1y GURTA, b DHS4L 1B | [T TETI
=G e RLT e RETTH LES™ g™ G 1R oY
e " e | o Bl fnb
SRGmI AR AADS XLAT)
En 1 vt EaCL Ev.GL ® » .
LOOP’:;"' LOOP(.;' LooP WXL N out
LOOP LOOP, o i
® s ALD BAX, b B AL &, eAX
T T REPNE | REPREPE TS GG Unavy Gop '
(Frat) XACCMIRE XRELEASE B B
(Frats) (Prata)

Table A-2. One-byte Opcode Map: (OOH — F7H) *

) [' | 2 | 3 [] [']]
3 ADD PUSH By
I, & | v, Gv l Go. kn l Ox. v I AL I WA e L
' ADG P s
N I e e O - ex
F] AND SEG-EA pAA™
esoe | evov | oees | ocEv | am | exn oy
3 XOR €055 FYvel
T I I L e o
] o geaoral regsier (WL Prataes
GAX ot X ufiX e8P obP o8l ol
HEX HEX D HEXX REX X1} RUX R HEX AL REX RX X RN
. UG Qeteral regaiee
XS X 10XM0 B 1SANN2 AP ivea 0015
$ PUBHA®Y POPASY gouno ™ AR SEGFS SEG-OS Oporand Aot
s AD POPALT™ Gv, Ma Ew, Gw Prwts) (Poafte) fiize titas
N SX Prota) (Pt
O« Ev
! Jor “z~hﬂ-mm-mpwmm
o NO INAEC NIVAENG TS AN %A NBEAA
: weoruasie Grs 10 TEST XCHG
b, v Itz ey, o™ Ev. 1o £ Gb Ev, v s, Go £, GV
 J NOPF ; XCHO word SOt word o Quad word segaler wil) tAX
mt’:fggﬁ:& 1Cxird I R S22 amy e Qus
A MOV MOVES MOVEWDG CMPS/B CMFEWID
Ao | ooy | oma | oveax e, Xy Yo Xy s, Yb Xe Yo
n MOV arenecars Syte irto yte mepister
amoL e | cumew DURYDL, BLRTIL, b AWRTZL Iy GURIE, b L
3 =G e RLT e RETTH LES™ g G 1N O
e | e " e | o Bl Sl
) RGmI AANT AAD YLAT)
£t v EaCL Ev.GL ® » .
3 LOOPNEST | LOGPES) 7 ol WXL N out
LY % » » Al BAX, & o AL ®, eAX
B3 T 1 RipmErE Wt | ome Unavy Gop '
-~ B B

Table A-2. One-byte Opcode Map: (OOH — F7H) *

0 [[I F]] 3 4 [] 0]
ADD) s O
ryt (% A
Lo, & l Ly, G l G, I | Ox. Uy AL | WX e
1 v ‘ Ai;? o Pu- 1 PO
oG | wwow | G | owny R s s
F AND paA™
Es G& | I Ev, Ov l Ob. Es l _____
; il
e | Ry, Gv | Gb. 0y |
' v
wAX ocx X uBX e8P I ol
HEX HEX D HEX X [WEX XN RUX R REX RXD
. o o o ' oLt el ragie -
IAXYE 1CXi 010 { B 1SRN 2 15
$ PUBHA™Y o souNo™ ARPL SECFS Acuena
P IAD POPAIY™ Gv, Ma Ew, Cow [Prots) tite
N SX D B (P
O« Ev
7 ";_TI —:ti- '.’s"-;ni-onn;.-u-vl NITE On condition -
Q NO IWNALC ' NIVAENG
s T
b, v Ix iz ey, o™
LOCK REPNE
O . (Prefix) XACQUIRE
XCHG o, ¢ oy (Prefix)
A Moy
AL, tAX, Qv l On AL | v, AX
n : MOV Tenecdiaom e in
ALY CURSL. v DURIL® | BLRNL b AWRIZL I GURYA, b DSR4 D | DRI D
(3 Gp2'h e RLTY | near RETES LES™ Log ™ Gep 1A o
daded “ vrc:-;':\;m Ve r:;w e b
0 S Gm 2t AAE AR XLAT)
Eb EaCL Ev GL ® » AT
T LOOPNE "“v e LOOP I Tl N out
o % " » AL BAX, & e AL &, eAX
¥ LOCK REPREPE T NG Uy Gp 3™
(Frat: XRELEASE B I B
(Prafa)

w Find out what’s really there

(Goal: Audit the Processor

v How to find hidden instructions”?

1he challenge

% INstructions can be one byte ...

@ INC eax
z 40

k... 0r 1o bytes ..
@ lock add gword cs:[eax + 4 * eax + 0/e06df23h], Oefcdab83h
@ 2e 67 f0 48 818480 23df067e 89abcdef

x Somewhere on the order of
1,32922/995,/849158/2,903,80/,060,280,3445/6
possible Instructions

1he challenge

https://code.google.com/archive/p/corkami/wikis/x86oddities wiki

w Ihe obvious approaches don’t work:
@ Iry them all?
] Only works for RISC
@ Iry random instructions?
| Exceptionally poor coverage
@ Guided based on documentation”?

7 Documentation can’t be trusted (that’s the point]
| Poor coverage of gaps in the search space

1he challenge

w Goal:
@ (uickly skip over bytes that don’t matter

1he challenge

v Ubservation:

@ The meaningful bytes of
an x86 Instruction impact either
its length or its exception behavior

1he challenge

w A depth-first-search algorithm

Tunneling

w (Guess an instruction:

00 00 00 00 00 00 040 00 00 00 00 00 00 00 00

Tunneling

v Execute the instruction:

00 00 00 00 00 00 00 000000 0000000000

Tunneling

w Ubserve its length:

00 00 00 00 00 00 00 00 00 00 00 0o 00 00 0o

Tunneling

w Increment the last byte:

00 01 00 00 00 00 00 00 00 00 00 00 00 00 0o

Tunneling

v Execute the instruction:

00 01 00 00 00 00 00 00 00000000 000000

Tunneling

w Ubserve its length:

00 01 00 00 00 00 00 00 00 00 0o 00 60 00 0o

Tunneling

w Increment the last byte:

00 02 00 00 00 00 00 00 00 00 00 00 00 04 00

Tunneling

v Execute the instruction:

00 02 00 00 00 00 00 00 00 00 00 00 0000 00

Tunneling

w Ubserve its length:

00 02 00 00 00 00 00 00 00 00 00 00 00 00 0o

Tunneling

w Increment the last byte:

00 03 00 00 00 00 00 00 00 00 00 00 00 00 00

Tunneling

v Execute the instruction:

00 03 00 00 00 00 00 00 00 00 00 00 00 0000

Tunneling

w Ubserve its length:

00 03 00 00 00 00 00 00 00 00 00 00 00 00 00

Tunneling

w Increment the last byte:

00 04 00 00 00 00 00 00 00 00 00 00 00 00 0o

Tunneling

v Execute the instruction:

00 04 00 00 00 00 00 0000000000 000000

Tunneling

w Ubserve its length:

00 04 00 00 00 00 00 00 00 00 00 0o 00 0o 0o

Tunneling

w Increment the last byte:

00 04 01 00 00 00 00 00 00 00 00 0o 00 0o 0o

Tunneling

v Execute the instruction:

0004 01 000000 000000000000 000000

Tunneling

w Ubserve its length:

00 04 01 00 00 00 00 00 00 00 00 0o 00 0o 0o

Tunneling

w Increment the last byte:

00 04 02 00 00 00 00 00 00 00 00 00 00 00 00

Tunneling

0000

0001

0002

0003

000400

000401

000402

000403

000404
00040500000000
00040500000001
00040500000002
00040500000003
00040500000004

w When the last byte is FF...

C/ 0405000000 00000000 F-00000000

Tunneling

% ... rrollover ...

C/ 0405000000 000000000000 00000a0

Tunneling

% .. and move to the previous byte

C/ 04 050000000000 0000000000000a0

Tunneling

w | his byte becomes the marker

C/ 04 050000000000 0000000000000a0

Tunneling

w Increment the marker

C/70405000000000000010000000000

Tunneling

w Execute the instruction

C/ 04 0500 00 00 000000010000 000000

Tunneling

w Observe its length

C/70405000000000000010000000000

Tunneling

w If the length has not changed...

C/70405000000000000010000000000

Tunneling

w Increment the marker

C/ 04 05000000 000000 020000000000

Tunneling

v And repeat.

C/ 04 05 00 00 00 00 00 00 02 00 00 00 00 00

Tunneling

w Continue the process...

C/ 04 0500 00 00 00 00 00 FF OO0 00 00 00 0o

Tunneling

% ... Moving back on each rollover

C/ 04 050000 000000 00000000 000000

Tunneling

% ... Moving back on each rollover

C/ 04 0500 00 00 0000 F- 00 00 00 0000 0o

Tunneling

% ... Moving back on each rollover

C/ 04 050000 000000000000 00000000

Tunneling

R...

C/ 04 0500 00 00 00 FF 00 00 00 00 0000 0o

Tunneling

R...

C/ 04 050000 000000000000 00000000

Tunneling

R...

C/ 04 0500 00 00 FF 00 00 00 00 00 00 00 0o

Tunneling

R...

C/ 04 050000 000000000000 00000000

Tunneling

R...

C/ 04 0500 00 FF 00 00 00 00 00 00 00 00 0o

Tunneling

R...

C/ 04 050000 000000000000 00000000

Tunneling

R...

C/ 04 0500 FF 00 00 00 00 00 00 00 0000 0o

Tunneling

R...

C/ 04 050000000000 00000000000000

Tunneling

R...

C/ 04 05 FF 00 00 00 00 00 00 00 00 00 00 0o

Tunneling

R...

C/ 04 050000 000000000000 00000000

Tunneling

w VWWhen you increment a marker...

C/ 04 06 00 00 00 00 00 00 00 00 00 00 00 00

Tunneling

L ... execute the instruction ...

C/ 04 06 00 00 00 00 00 00 00 00 00 00 00 00

Tunneling

% ... and the length changes ...

C/ 04 06 000000 0000 000000000000 00

Tunneling

... Move the marker to
the end of the new instruction ...

C/ 04 06 0000000000 000000000000 00

Tunneling

% ... and resume the process.

C/0406000000010000000000000000

Tunneling

x lunneling through the instruction space
lets us quickly skip over the bytes
that don’t matter,
and exhaustively search the bytes that do...

Tunneling

% ... reducing the search space
from 1.3x10-° instructions
to ~100,000,000
(one day of
Ser=Ia[allale]

Tunneling

w Catch:
requires knowing the instruction length

Instruction lengths

w Simple approach: trap flag
@ Falls to resolve the length of faulting instructions

@ Necessary to search privileged instructions:
] ring 0 only: mov crQ, eax
] ring -1 only: vmenter
] ring -2 only: rsm

Instruction lengths

w Solution: page fault analysis

Instruction lengths

v Choose a candidate instruction
@ (we don’t know how long this instruction is)

OF BABOBA /7860 Ce 02 B6E AAD2 38 0B B/ o2

Page fault analysis

x Configure two consecutive pages in memaory
@ The first with read, write, and execute permissions
@ 1he second with read, write permissions only

Page fault analysis

w Place the candidate instruction in memory
@ Place the first byte at the end of the first page
@ Place the remaining bytes at the start of the second

OF

bA 60 BA /9 6D Co 02 ...

Page fault analysis

x Execute (jump to) the instruction.

OF

6A 60 6A 79 6D C6 02 ...

Page fault analysis

w 1he processor’s instruction decoder checks
the first byte of the instruction.

OF

6A 60 BA /78 6D C6 02 ...

Page fault analysis

w If the decoder determines that another byte is
necessary, it attempts to fetch It.

OF

BA 60 6A /96D Cb 02 ...

Page fault analysis

x 1 his byte is on a non-executable page,
so the processor generates a page fault.

OF

BA 60 6A /96D Cb 02 ...

Page fault analysis

w Ihe #PF exception provides
a fault address in the CR2 register.

OF

BA 60 6A /96D Cb 02 ...

Page fault analysis

g If we receive a #PF, with CRZ2 set
to the address of the second page,
we know the instruction continues.

OF

BA 60 6A /96D Cb 02 ...

Page fault analysis

xw Move the instruction back one byte.

OF BA

60 6A /9 6D CB 02 ...

Page fault analysis

w Execute the instruction.

OF BA

60 6A 786D C6 02 ...

Page fault analysis

w 1he processor’s instruction decoder checks
the first byte of the instruction.

OF BA

60 6A /9 6D Cb 02 ...

Page fault analysis

w If the decoder determines that another byte is
necessary, it attempts to fetch It.

OF BA| 60 BA /79 60 Cb 02 ...

Page fault analysis

x Since this byte is In an executable page,

decoding continues.

OF BA

60 6A /9 6D Cb 02 ...

Page fault analysis

w If the decoder determines that another byte is
necessary, it attempts to fetch It.

OF 6A |60 6A /79 6D C6 02 ...

Page fault analysis

w his byte is on a non-executable page,
so the processor generates a page fault.

OF BA

B0 BA /786D CB 02 ...

Page fault analysis

xw Move the instruction back one byte.

OF BA B0

bA /796D Cb 02 ...

Page fault analysis

w Execute the instruction.

OF 6A 60

6A /796D C6 02 ...

Page fault analysis

w Continue the process while
WE receive #PF exceptions
with CRZ2 = second page address

OF 6AB0|6A /9 60 Cb 02 ...

Page fault analysis

xw Move the instruction back one byte.

OF B6A 60 BA

/86D CB 02 ...

Page fault analysis

w Execute.

OF 6A 60 6A

/96D C6 02 ...

Page fault analysis

w Eventually, the entire instruction
will reside In the executable page.

OF BAB0BA| /9 60 Cb 02 ...

Page fault analysis

v [he instruction could run.
v The instruction could throw a different fault.

w I he instruction could throw a #PF,
but with a different CRZ.

OF BAB0BA| /9 60 Cb 02 ...

Page fault analysis

x In all cases, we know the instruction has been
successfully decoded, so must reside entirely
INn the executable page.

OF BAB0BA| /9 60 Cb 02 ...

Page fault analysis

w With this, we know the instruction’s length.

OF BAB0BA| /9 6D Ct 02 ...

Page fault analysis

xw We now know how many bytes the
iINnstruction decoder consumed

w But just because the bytes were decoded
does not mean the instruction ex/sts

w If the instruction does not exist,
the processor generates the #UL exception
after the instruction decode
(invalid opcode exception]

Page fault analysis

w IT we don’t receive a #U0J, the instruction exists.

Page fault analysis

w Besolves lengths for:
@ Successfully executing instructions
@ Faulting instructions

@ Privileged instructions:
] ring 0 only: mov cr(, eax
] ring -1 only: vmenter
] ring -2 only: rsm

Page fault analysis

w 1 he “injector” process performs
the page fault analysis and
tunneling instruction generation

1he Injector

w We’re fuzzing the same
device that we’re running on

v How do we make sure we don’t crash?

SUrVIVING

w otep 1:
@ LIimit ourselves to ring 3
@ \We can still resolve instructions
living In deeper rings
@ This prevents accidental total system failure
(except in the case of serious processor bugs]

SUrVIVING

w Step 2:
@ Hook all exceptions the instruction might generate
@ In Linux:
8 SIGSEGV
8 SIGILL
8 SIGFPE
] SIGBUS
] SIGTRAP

@ Process will clean up after itself when possible

SUrVIVING

w otep 3:
@ |Initialize general purpose registers to U

@ Arbitrary memory write instructions like
add [eax + 4 " ecx], Ox8102
will not hit the injecting process’s address space

SUrVIVING

x Step 3 (continued):

@ Memory calculations using an offset:
add [eax + 4 * ecx + Oxf88102cdB], 0x8102
would still result iIn Nnon-zero accesses

@ Could lead to process corruption
if the offset falls into the injector’s address space

SUrVIVING

x Step 3 (continued):
@ 1he tunneling approach ensures
offsets are constrained
v Ox0000002F
v OxOO0O0AS0O0
7 0x00420000
5 Ox1EO000000

@ 1he tunneled offsets will not fall into
the injector’s address space

@ They will seg fault, but seg faults are caught
@ 1he process still won’t corrupt itself

SUrVIVING

w We’ve handled faulting instructions

x What about non-faulting instructions”?

@ 1he analysis needs to continue
after an instruction executes

SUrVIVING

w Set the trap flag prior to
executing the candidate instruction

w Un trap, reload the registers to a known state

SUrVIVING

v With these...
@ Ring 3
@ Exception handling
@ Begister initialization
@ Register maintenance
@ Execution trapping

% ... the injector survives.

SUrVIVING

w SO0 We Now have a way to searchthe
INstructions space.

z How do we make sense
of the instructions we execute”?

Analysis

w 1 he “sifter” process parses
the executions from the injector
and pulls out the anomalies

The Sifter

w We need a “ground truth”

x Use a disassembler
z It was written based on the documentation
@ Capstone

olifting

v Undocumented instruction:

@ Disassembler doesn’t recognize byte sequence and ...
@ Instruction generates anything but a #UD

x Software bug:

@ Disassembler recognizes instruction but ...
@ Processor says the length is different

x» Hardware bug:
@ 277

@ NO consistent heuristic, investigate when something fails

olifting

sandsifter - demo

NOUIN =

shl ebx, 0x6b
(unk)

and edx, esi
imul edx, dword ptr [r 0]
movabs d ptr [0x82d917b0O ea

push rsp

(unk)

Nt A R77R
)i ca \ 1 » / O
ftst

(unk)
and

2,259,724
39800/s

"

2112

Sdall

dsifter

VIA Nano U3500@1000MHz

arch: 32 / processor: 0 / vendor: CentaurHauls / family: 6 / model: n/a / stepping: 8 / ucode:

VVVVVVVVVO:
(o]
—h
[
o

0fa7..
Ofa7cl
Ofalc2
0fa7c3
Ofa7c4
Ofa7ch
Ofa7c6
0fa7c7
> Ofae..
> c4.... .
= Y ucea e mw e
> db..
dbe0d
dbel
> df..
dfcO
dfcl
dfc2

down, J: DOWN
up, K: UP
L
I..

—~ X

expand :all
collapse all
start G: end
previous }: next
quit and print

pn)

0 ~ Q0

n/a

instruction:

Ofa7c2

prefixes:
valids:
lengths:
signums:
signals:
sicodes:

analysis:

capstone:
(unk)
n/a

ndisasm:
(unknown)
n/a

objdump:
(unknown)
n/a

(9

(1)

(3)

(5)
(sigtrap)
(2)

symmarizer

» We now have a way to
systematically scan our processor
for secrets and bugs

alet=alaligle

k | scanned eight systems in my test library.

alet=alaligle

x Hidden instructions

w Ubiguitous software bugs
w Hypervisor flaws

x» Hardware bugs

Hesults

Hidden instructions

x Scanned: Intel Core i/-4650U CPU

Intel hidden instructions

w OfOdxx

@ Undocumented for non-/1 reg fields
w Of18xx, Of{1a-1f}xx
@ Undocumented until December 2016
w Ofae{e9-ef, f1-f7/, {9-ff}
@ Undocumented for non-0 r/m fields until June 2014

Intel hidden instructions

v dbe(0, dbel

w df{cO-c7/}

v 1

v {cO0-c1H{30-37, 70-77, b0-b7, fO-f/}
v {d0-d1}{30-37, 70-77, bO-b7, fO-f7/}
v {d2-d3}{30-37, 70-77, bO-b7, fO-f7/}
w f6/1,f7 /1

Intel hidden instructions

x Scanned: AMD Athlon (Geode NX1500]

AM

) hidden instructions

& OfOf{40-7f{80-ff)}{xx)

@ Undocumented for range of xx

w dbe(, dbel
w df{cO-c7/}

AM

) hidden instructions

v Scanned: VIA Nano U3500, VIA C/-M

VIA hidden instructions

v OfOdxx

@ Undocumented by Intel for non-/1 reg fields
w Of18xx, Of{1a-1f}xx
@ Undocumented by Intel until December 2016
w Ofa/{cl-c7/}
w Ofae{e9-ef, f1-f7/, {9-ff}
@ Undocumented by Intel for non-0 r/m fields until June 2014
v dbe(, dbel
w df{cO-c7/}

VIA hidden instructions

v What do these do?”

@ S0ome have been reverse engineered
@ Some have no record at all.

Hidden instructions

ooftware bugs

K ISsue:

z The sifter is forced to use a disassembler
as its “ground truth”

@ Every disassembler we tried as the
“ground truth” was littered with bugs.

ooftware bugs

w Most bugs only appear in a few toaols,
and are not especially interesting

x SO0mMe bugs appeared in a//tools
@ These can be used to an attacker’s advantage.

ooftware bugs

i BBETXXXXXX (jMp]
i B6e8xxxxxx (call]

ooftware bugs

i BBEIXxXXXxX (jmp]
i BBe8xxxxxxx (call]

k IN x86_64
x Theoretically, a jmp (e9) or call (e8],
with a data size override prefix (66]

@ Changes operand size from default of 32
] Does that mean 16 bit or 64 bit?
8 Neither. 66 is ignored by the processor here.

ooftware bugs

w Everyone parses this wrong.

ooftware bugs

; DATA XREF: .pdata:000000014008256B4)0

} S============== S UBROUTTINMNE =======================================
.=l IS el ; DATA XREF: .rdata:000000014001AA4Clo

”‘) 7~ N ; .pdata:00000001400256C0 0
’j @jmp v
e > el B T T T T T T T T T T T TS s s s m s m s —m---—————-

ooftware bugs (IDA

Address: 00007ff7b9efaef0()

° Viewing Options
©0eO7FF7B9EF8EE4 48 83 C4 38 add
©0eO7FF7B9EF8EES C3 ret
©0Re7FF7B9EF8EE9 CC int
©ORO7FF7BYEFSEEA CC int
©0ee7FF7B9EFSEEB CC int
©0ee7FF7B9EF8EEC CC int
©0OO7FF7BOEFSEED CC __ msemenc, int
©0RO7FF7B9EFSEEE ol B int
©0007FF7B9EF8EE int 5
* 60007FF7B9EF8EK| jmp @;
©0e07FF7B9EFSEFE nop
©0RO7FF7B9EFSEF7 ra nop -
©0eO7FF7BI9EFSEF8 90 nop
©0RO7FF7B9EFSEF9 48 83 C4 28 add rsp,28h
©0RO7FF7BIEFSEFD E9 06 00 00 @0 jmp ©0e07FF7B9EF8FO8
©ORO7FF7BIEF8FO2 CC int 3
©0eO7FF7BI9EF8FO3 CC int 3
©0RO7FF7B9EF8FO4 CC int 3
©0Re7FF7B9EF8FO5 CC int 3
©ORO7FF7BYEF8FO6 CC int 3
©0eO7FF7BI9EF8FO7 CC int 3
OBBe7FF7BO9EF8FG8 48 8B C4 mov rax,rsp
OBBO7FF7BO9EF8FGB 48 89 58 ©8 mov gword ptr [rax+8],rbx
©POO7FF7BO9EF8FBF 48 89 70 180 mov gword ptr [rax+18h],rsi
©0eO7FF7B9EF8F13 48 89 78 18 mov gword ptr [rax+18h],rdi
©OOO7FF7BIEF8F17 41 57 push ris Activate Windows
©0OO7FF7BOEFSF19 48 81 EC BO 00 00 00 sub rsp,®Beh Sl el e

—————————————— - PR

Software bugs (VS

v An attacker can use this to
mask malicious behavior

@ Throw off disassembly and jump targets
to cause analysis tools to miss the real behavior

ooftware bugs

00000000004004ed <

4004ed:
4004ee:
40047f1:
4004f5:
4004fa:
4004Ff:
400509:
400513:
40051d:
400527 :
400531:
40053b:

55 e,
89 e5

48
66
.05

05700 00

48
48
48
48
48
48
48

e9 00
00 00

b8
b8
b8
b8
b8
b8
b8

b8
b8
b8
b8
b8
b8
b8

(0]¢)
QR
00
11
11
11
11
11
11
11

%0
00
22
22
22
22
22
22
22

33
33
33
33
33
33
33

44
44
44
44
44
44
44

ff
ff
ff
ff
ff
ff
ff

el
el
el
el
el
el
el

90
90
90
90
90
90
90

push_..%rbhp

mOv %rsp,%rbp

jmpw 4f5 < Jinit-0x3ffeb3>

“.add $0xAs%eax

add — $0x0,%eax

movabs $0x90e0ff44332211b8,%rax
movabs $0x90e0ff44332211b8,%rax
movabs $8 AQBerf44332211bb,%rax
movabq.$Bx98e8ff44332211b8 srax
movabs “$Ax90e0f 44332213458, %srax
movabs $0x90e0@tf44332211b8,%rax
movabs $0x90e0ff44332211b8,%rax

Software bugs (objdump]

root@delta-vm:~# |}

Software bugs (QEMU]

k B6 jmp
x Why does everyone get this wrong®

v AMD): override changes operand to 16 bits,
iINstruction pointer truncated

x INntel: override ignored.

ooftware bugs

k Issues when we can’t agree on a standard
@ sysret bugs

w Either Intel or AMD is going to be
vulnerable when there is a difference

w Impractically complex architecture
@ lools cannot parse a jump instruction

ooftware bugs

HYPervisor bugs

x [N an Azure instance,
the trap flag is missed
on the cpuid instruction

3 (cpuid causes a vmexit,
and the hypervisor forgets
to emulate the trap)

Azure hypervisor bugs

AzZUre nypervisor bugs

Hardware bugs

w Hardware bugs are troubling

@ A bug in hardware means
you now have the same bug
in all of your software.

z Difficult to find
gz Difficult to fix

Hardware bugs

x Scanned:
@ Quark, Pentium, Core i/

Intel hardware bugs

v fOOf bug on Pentium (anti-climactic)

Intel hardware bugs

AM

v Scanned:
z (Geode NX1500, C-50

) hardware bugs

AM

x Un several systems,
receive a #UJLJ) exception
prior to complete instruction fetch

w Per AMD specifications, this is incorrect.
@ #PF during instruction fetch takes priority

e ... until ...

) hardware bugs

AMDZQ

AMDG4 Technology
Table 8-8. Simultaneous Interrupt Priorities

P
24593—Rev. 3.28--March 2017

C|><

"F"tr?:rlilt‘;t Interrupt Condition 'rs:;zft
(High) Processor Reset —

0 Machine-Check Exception 18
External Processor Initialization (INIT)

1 SMI Interrupt —
External Clock Stop (Stpclk)

2 Data, and I/O Breakpoint (Debug Register) ’
Single-Step Execution Instruction Trap (RFLAGS.TF=1)

3 Non-Maskable Interrupt 2

4 Maskable External Interrupt (INTR) 32-255
Instruction Breakpoint (Debug Register) 1

5 Code-Segment-Limit Viola@ﬂ’_\ 13
Instruction-Fetch Page Féu\ltl/ 14
Invalid Opcode Exception1

6 Device-Not-Available Exception 7
Instruction-Length Violation (> 15 Bytes) 13

P
Note:
7 This reflects the reiative prionty for faults encountered when fetching the first byte of an instruction. [n the fetching
and decoding of subseguent bytes of an instruction, an invalid Opcode exception may be detected and raised
before a fefch-related fault would be seen on a later byte. This behawvior is model-dependent.

v Scanned:
z TM5/00

Iransmeta hardware bugs

w Instructions: Of{71,72,7 3}xxxx
w Can receive #MF exception during fetch

w Example:
@ Pending x8/ FPU exception
@ psrad mm4, -0Ox50 (Of 72e4b0)
@ #MFE received after Of /2e4 fetched

@ Correct behavior: #°F on fetch,
last byte is still on invalid page

Iransmeta hardware bugs

x Found on one processor..

v An apparent “halt and catch fire” instruction

@ Single malformed instruction in ring 3
locks the processor

@ lested on 2 Windows kernels, 3 Linux kernels
@ Kernel debugging, serial I/0,
interrupt analysis seem to confirm
w Unfortunately,
not finished with responsible disclosure

w No detalls available
on chip, vendor, or instructions

hardware bugs

ring 3 processor PJos:

demo

\

w First such attack found in 20 years
(since Pentium fOOf)

hardware bugs

x Significant security concern:
processor JoS from unprivileged user

hardware bugs

x Details (hopefully) released within the next month
(stay tuned]

hardware bugs

w Jpen sourced:
@ 1he sandsifter scanning tool
@ github.com/xoreaxeaxeax/sandsifter

w Audit your processor,
break disassemblers/emulators/hypervisors,
halt and catch fire, etc.

Conclusions

x I’ve only scanned a few systems
w 1his is a fraction of what | found on mine
w Who knows what exists on yours

Conclusions

w Check your system
@ Send us results if you can

Conclusions

w Don’t blindly trust the specifications.

Conclusions

w Sandsifter lets us introspect
the black box at the heart of our systems.

Conclusions

wgithub.com/xoreaxeaxeax

z sandsifter
« M/o/\/fuscator

v Feedback”? |deas”?

2 dOoMmas
@ @xOoreaxeaxeax
@ XOreaxeaxeax@gmail.com

